1、,2015-4-21,17.2 用分解因式法解一元二次方程,复习引入:,. 我们已学过的一元二次方程解法有哪些?1.直接开平方法:x2=a; 2.配方法:(x+h)2=K; 3.公式法:x=-b(b-4ac)/2a这一节课我们将要学习又一种新的解法:因式分解法解方程,教学目标: 1、熟练掌握用因式分解法解一元二次方程。 2、通过用分解因式法解一元二次方程的学习,树立转化 的思想。 教材重难点: 重点:用因式分解法解一元二次方程 难点:正确理解 AB=0A=0或,提问:分解因式的方法有哪些?1.提取公因式法:am+bm+cm=m(a+b+c)2.公式法:a2-b2=(a+b)(a-b); a2-
2、2ab+b2=(a-b)23.十字相乘法:x2 +(a+b)x+ab=(x+a)(x+b)请用已学过的方法解方程 x2 9=0 解:原方程可变形:(x+3)(x-3)=0 AB=0A=0或 我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式中有一个等于0,那么它们的积就等于0.因此,有 X+3=0 或 x3=0 x1=3 ,x2=-3,这种通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法。,例题讲解:例4 解方程:解:把方程左边分解因式, 得 (x-2)(x-3)=0因此,有 x2=0 或 x3=0解方程,得 x1=2 ,x
3、2=3,例5 解方程:(x+4)(x-1)=6,解 将原方程化为标准形式,得 x2 + 3x- 10=0 把方程左边分解因式,得 (x+5)(x-2)=0 x+5=0 或 x2=0 解方程,得 x1=-5 , x2=2 当一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可以用分解因式法来解.,课堂练习:,P30 练习,小 结:一:用分解因式法解一元二次方程的步骤:,1、方程右边化为 0 。2、将方程左边分解成两个一次因式的乘积。3、至少 有一个 因式为零,得到两个一元一次方程。4、两个 一元一次方程的解 就是原方程的解。,.,二.解一元二次方程的方法:直接开平方法 配方法 公式法 分解因式法 作业 P30 习题17.2 第5题,