收藏 分享(赏)

宁明实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc

上传人:爱你没说的 文档编号:9524751 上传时间:2019-08-12 格式:DOC 页数:16 大小:643KB
下载 相关 举报
宁明实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第1页
第1页 / 共16页
宁明实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第2页
第2页 / 共16页
宁明实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第3页
第3页 / 共16页
宁明实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第4页
第4页 / 共16页
宁明实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 16 页宁明县实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 平面 与平面 平行的条件可以是( )A 内有无穷多条直线与 平行B直线 a, aC直线 a,直线 b,且 a,bD 内的任何直线都与 平行2 已知集合 |5xN,则下列关系式错误的是( )A 5 B 1.A C 1A D 0A3 对于任意两个正整数 m, n,定义某种运算“”如下:当 m,n 都为正偶数或正奇数时,mn=m+n;当m,n 中一个为正偶数,另一个为正奇数时, mn=mn则在此定义下,集合 M=(a,b)|a b=12,a N *,bN *

2、中的元素个数是( )A10 个 B15 个 C16 个 D18 个4 如图,四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,D 为四面体 OABC 外一点给出下列命题不存在点 D,使四面体 ABCD 有三个面是直角三角形不存在点 D,使四面体 ABCD 是正三棱锥存在点 D,使 CD 与 AB 垂直并且相等存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上其中真命题的序号是( )A B C D5 设 是等差数列 的前项和,若 ,则 ( )nSna539a95SA1 B2 C3 D46 设 a,bR 且 a+b=3,b0,则当 + 取得最小值时,实数

3、a 的值是( )A B C 或 D37 设 i 是虚数单位, 是复数 z 的共轭复数,若 z =2( +i),则 z=( )精选高中模拟试卷第 2 页,共 16 页A1 i B1+i C 1+i D1i8 在 中, , ,其面积为 ,则 等于( )60Ab3sinsinabcABCA B C D329833929 从 1、2、3、4、5 中任取 3 个不同的数、则这 3 个数能构成一个三角形三边长的概率为( )A. B.11015C. D.3102510已知 i 是虚数单位,则复数 等于( )A + i B + i C i D i11如图所示,在平行六面体 ABCDA1B1C1D1中,点 E

4、为上底面对角线 A1C1的中点,若 = +x +y,则( ) Ax= Bx= Cx= Dx=12已知直线 y=ax+1 经过抛物线 y2=4x 的焦点,则该直线的倾斜角为( )A0 B C D二、填空题13若直线 ykx1=0(kR)与椭圆 恒有公共点,则 m 的取值范围是 14甲、乙两个箱子里各装有 2 个红球和 1 个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 15阅读如图所示的程序框图,则输出结果 的值为 .S精选高中模拟试卷第 3 页,共 16 页【命题意图】本题考查程序框图功能的识别,并且与数列的前 项和相互联系,突出对逻辑判断及基本运算n能力的综合考查,难度中等.

5、16设集合 A=3,0,1 ,B=t 2t+1若 AB=A,则 t= 17已知函数 , ,其图象上任意一点 处的切线的斜率 恒()lnafx(0,3x0(,)Pxy12k成立,则实数的取值范围是 18已知函数 f(x)=cosxsinx,给出下列四个结论:若 f(x 1)= f(x 2),则 x1=x2;f(x)的最小正周期是 2;f(x)在区间 , 上是增函数;f(x)的图象关于直线 x= 对称其中正确的结论是 三、解答题19(本小题满分 12 分)已知圆 : 的圆心在第二象限,半径为 ,且圆 与直线 及 轴C02FEyDx 2C043yx都相切.精选高中模拟试卷第 4 页,共 16 页(1

6、)求 ;FED、(2)若直线 与圆 交于 两点,求 .02yxCBA、 |20已知函数 f(x)=(log 2x2)(log 4x )(1)当 x2,4时,求该函数的值域;(2)若 f(x)mlog 2x 对于 x4 ,16恒成立,求 m 的取值范围21已知a n为等比数列, a1=1,a 6=243S n为等差数列 bn的前 n 项和,b 1=3,S 5=35(1)求a n和 Bn的通项公式;(2)设 Tn=a1b1+a2b2+anbn,求 Tn22(本小题满分 12 分)已知等差数列 的前 项和为 ,且 , nanS901524S(1)求 的通项公式 和前 项和 ;nanaS精选高中模拟试

7、卷第 5 页,共 16 页(2)设 , 为数列 的前 项和,若不等式 对于任意的 恒成立,求实数 的1()nabnSnbnSt*nNt取值范围23已知函数 f(x)=(sinx+cosx) 2+cos2x(1)求 f(x)最小正周期;(2)求 f(x)在区间 上的最大值和最小值24设函数 f(x)=lnx ax2bx(1)当 a=2,b=1 时,求函数 f(x)的单调区间;(2)令 F(x)=f (x)+ ax2+bx+ (2x 3)其图象上任意一点 P(x 0,y 0)处切线的斜率 k 恒成立,求实数 a 的取值范围;(3)当 a=0,b= 1 时,方程 f(x)=mx 在区间1,e 2内有

8、唯一实数解,求实数 m 的取值范围精选高中模拟试卷第 6 页,共 16 页精选高中模拟试卷第 7 页,共 16 页宁明县实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:当 内有无穷多条直线与 平行时,a 与 可能平行,也可能相交,故不选 A当直线 a,a 时,a 与 可能平行,也可能相交,故不选 B当直线 a,直线 b,且 a 时,直线 a 和直线 b 可能平行,也可能是异面直线,故不选 C当 内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况

9、2 【答案】A 【解析】试题分析:因为 |5xN ,而 ,即 B、C 正确,又因为 且1.,.5,1NA0N,所以 ,即 D 正确,故选 A. 105考点:集合与元素的关系.3 【答案】B【解析】解:ab=12,a 、bN *,若 a 和 b 一奇一偶,则 ab=12,满足此条件的有 112=34,故点(a,b)有 4 个;若 a 和 b 同奇偶,则 a+b=12,满足此条件的有 1+11=2+10=3+9=4+8=5+7=6+6 共 6 组,故点(a,b)有261=11 个,所以满足条件的个数为 4+11=15 个故选 B4 【答案】D【解析】【分析】对于可构造四棱锥 CABD 与四面体 O

10、ABC 一样进行判定;对于,使 AB=AD=BD,此时存在点 D,使四面体 ABCD 是正三棱锥;对于 取 CD=AB,AD=BD,此时 CD 垂直面 ABD,即存在点 D,使CD 与 AB 垂直并且相等,对于先找到四面体 OABC 的内接球的球心 P,使半径为 r,只需 PD=r,可判定的真假【解答】解:四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,AC=BC= ,AB=当四棱锥 CABD 与四面体 OABC 一样时,即取 CD=3,AD=BD=2此时点 D,使四面体 ABCD 有三个面是直角三角形,故不正确使 AB=AD=BD,此时存在点 D,使四面体

11、ABCD 是正三棱锥,故不正确;取 CD=AB,AD=BD,此时 CD 垂直面 ABD,即存在点 D,使 CD 与 AB 垂直并且相等,故 正确;精选高中模拟试卷第 8 页,共 16 页先找到四面体 OABC 的内接球的球心 P,使半径为 r,只需 PD=r 即可存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上,故 正确故选 D5 【答案】A【解析】1111试题分析: 故选 A111199553()21aS考点:等差数列的前项和6 【答案】C【解析】解:a+b=3,b0,b=3a0,a 3,且 a0当 0a3 时, + = = + =f(a),f(a )= + = ,当 时,f(a

12、)0,此时函数 f(a)单调递增;当 时,f (a)0,此时函数 f(a)单调递减当 a= 时, + 取得最小值当 a0 时, + =( )= ( + )=f(a),f(a )= = ,当 时,f(a)0,此时函数 f(a)单调递增;当 时,f (a)0,此时函数 f(a)单调递减当 a= 时, + 取得最小值综上可得:当 a= 或 时, + 取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题精选高中模拟试卷第 9 页,共 16 页7 【答案】B【解析】解:设 z=a+bi(a,b R),则 =abi,由 z =2( +i),得

13、(a+bi)(abi)=2a+(b1)i,整理得 a2+b2=2a+2(b 1)i则 ,解得 所以 z=1+i故选 B【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题8 【答案】B【解析】试题分析:由题意得,三角形的面积 ,所以 ,又 ,013sinsi624SbcAcbc4bc1所以 ,又由余弦定理,可得 ,所以 ,4c 20o1os613a3a则 ,故选 B039sinsinisi6abABCA考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的

14、综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到 是解答的关键,属于中档试题sinsiniabcaABCA9 【答案】【解析】解析:选 C.从 1、2 、3、4、5 中任取 3 个不同的数有下面 10 个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率 P .31010【答案】A【解析】解:复数 = = = ,故选:A【点评】本题考查了复数

15、的运算法则,属于基础题精选高中模拟试卷第 10 页,共 16 页11【答案】A【解析】解:根据题意,得;= + ( + )= + += + ,又 = +x +y ,x= ,y= ,故选:A【点评】本题考查了空间向量的应用问题,是基础题目12【答案】D【解析】解:抛物线 y2=4x 的焦点(1,0),直线 y=ax+1 经过抛物线 y2=4x 的焦点,可得 0=a+1,解得a=1,直线的斜率为1,该直线的倾斜角为: 故选:D【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力二、填空题13【答案】 1,5)(5,+) 【解析】解:整理直线方程得 y1=kx,直线

16、恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在 y 轴上,而该椭圆关于原点对称,故只需要令 x=0 有5y2=5m得到 y2=m要让点(0.1)在椭圆内或者椭圆上,则 y1 即是y21得到 m1精选高中模拟试卷第 11 页,共 16 页椭圆方程中,m 5m 的范围是1,5)(5,+)故答案为1,5)(5,+ )【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观14【答案】 98【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,

17、 可以看成是有序的,如 与 不同;有),(yx1,2,时也可以看成是无序的,如 相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破)1,(比较困难或者比较繁琐时,考虑其反面,即对立事件,应用 求解较好)(1AP15【答案】 20176【解析】根据程序框图可知,其功能是求数列 的前 1008 项的和,即)12(n 5321S. 0715()53()5 616【答案】 0 或 1 【解析】解:由 AB=A 知 BA,t 2t+1=3t2t+4=0,无解 或 t2t+1=0,无解 或 t2t+1=1,t 2t=0,解得 t=0 或 t=1故答案为 0 或 1【点评】本题考查集合运算及基本关

18、系,掌握好概念是基础正确的转化和计算是关键精选高中模拟试卷第 12 页,共 16 页17【答案】 21a【解析】试题分析: ,因为 ,其图象上任意一点 处的切线的斜率 恒成立, 2()fx(0,3x0(,)Pxy12k, , , 恒成立,由 121ax0,3a21(,x21,a考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最

19、重要的条件18【答案】 【解析】解:函数 f(x)=cosxsinx= sin2x,对于,当 f(x 1)= f(x 2)时,sin2x 1=sin2x2=sin(2x 2)2x1=2x2+2k,即 x1+x2=k,kZ,故错误;对于,由函数 f(x)= sin2x 知最小正周期 T=,故错误;对于,令 +22x +2k,kZ 得 +kx +k,kZ当 k=0 时,x , ,f(x)是增函数,故 正确;对于,将 x= 代入函数 f(x)得,f( )= 为最小值,故 f(x)的图象关于直线 x= 对称, 正确综上,正确的命题是故答案为:三、解答题19【答案】(1) , , ;(2) .2D4E8

20、FAB【解析】精选高中模拟试卷第 13 页,共 16 页试题解析:(1)由题意,圆 方程为 ,且 ,C2)()(2byax0,ba圆 与直线 及 轴都相切, , , ,C043yx 5|43|2圆 方程为 ,)()2(2化为一般方程为 ,084yx , , .D4EF(2)圆心 到直线 的距离为 ,)2,(C2 12| d .1|2drAB考点:圆的方程;2.直线与圆的位置关系.120【答案】 【解析】解:(1)f(x)=(log 2x2)(log 4x )= (log 2x) 2 log2x+1,2x 4令 t=log2x,则 y= t2 t+1= (t )2 ,2x4,1t2当 t= 时,

21、y min= ,当 t=1,或 t=2 时,y max=0函数的值域是 ,0(2)令 t=log2x,得 t2 t+1mt 对于 2t4 恒成立m t+ 对于 t2 ,4恒成立,设 g(t)= t+ ,t2,4,精选高中模拟试卷第 14 页,共 16 页g( t)= t+ = (t+ ) ,g( t)= t+ 在2,4上为增函数,当 t=2 时,g( t) min=g(2) =0,m021【答案】 【解析】解:()a n为等比数列, a1=1,a 6=243,1q 5=243,解得 q=3, S n为等差数列b n的前 n 项和,b 1=3,S 5=3553+ d=35,解得 d=2,bn=3

22、+( n1)2=2n+1 ()T n=a1b1+a2b2+anbn,得:,整理得: 【点评】本题考查数列的通项公式的求法,考查数列的前 n 项和的求法,解题时要认真审题,注意错位相减法的合理运用22【答案】【解析】【命题意图】本题考查等差数列通项与前 项和、数列求和、不等式性质等基础知识,意在考查逻n辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用精选高中模拟试卷第 15 页,共 16 页23【答案】 【解析】解:(1)函数 f(x)= (sinx+cosx) 2+cos2x=1+sin2x+cos2x=1+ sin(2x+ ),它的最小正周期为 =(2)在区间 上,2x+

23、, ,故当 2x+ = 时,f (x)取得最小值为 1+ ()=0,当 2x+ = 时,f(x)取得最大值为 1+ 1=1+ 24【答案】 【解析】解:(1)依题意,知 f(x)的定义域为(0,+)当 a=2,b=1 时,f(x)=lnxx 2x,f(x)= 2x1= 令 f(x)=0,解得 x= 精选高中模拟试卷第 16 页,共 16 页当 0x 时,f(x)0,此时 f(x)单调递增;当 x 时,f(x)0,此时 f(x)单调递减所以函数 f(x)的单调增区间( 0, ),函数 f(x)的单调减区间( ,+)(2)F(x)=lnx+ ,x2,3,所以 k=F(x 0)= ,在 x02 ,3上恒成立,所以 a( x02+x0) max,x 02,3 当 x0=2 时, x02+x0取得最大值 0所以 a0(3)当 a=0,b= 1 时,f (x)=lnx+x ,因为方程 f(x)=mx 在区间1,e 2内有唯一实数解,所以 lnx+x=mx 有唯一实数解m=1+ , 设 g(x)=1+ ,则 g(x)= 令 g(x)0,得 0xe ; g(x)0,得 xe ,g( x)在区间1,e上是增函数,在区间 e,e 2上是减函数,1 0 分g( 1)=1 ,g(e 2)=1+ =1+ ,g(e )=1+ ,所以 m=1+ ,或 1m1+

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报