1、精选高中模拟试卷第 1 页,共 18 页金寨县实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 四棱锥 的底面 为正方形, 底面 , ,若该四棱锥的所有顶点都在PABCDPABCD2A体积为 同一球面上,则 ( )2436PA3 B C D72392【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力2 若变量 xy, 满足约束条件0241xy,则目标函数 32zxy的最小值为( )A-5 B-4 C.-2 D33 已知向量 , ( ),且 ,点 在圆 上,则(,2)am(,)
2、bn00ab(,)Pmn25xy( )|2|bA B C D4 424 函数 f(x)=x 2x2,x5,5,在定义域内任取一点 x0,使 f(x 0)0 的概率是( )A B C D5 抛物线 y=8x2 的准线方程是( )Ay= By=2 Cx= Dy= 26 已知的终边过点 ,则 等于( )2,37tan4A B C-5 D515157 若函数 是偶函数,则函数 的图象的对称轴方程是( )111.Com)1(xfy )(xfyA B C Dxx 2x2x8 已知全集 , , ,则 ( ),234,67U2,46A1,357B()UABA B C D2,465,4,59 如果 ab,那么下
3、列不等式中正确的是( )精选高中模拟试卷第 2 页,共 18 页A B|a|b| Ca 2b 2 Da 3b 310算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖” 的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长 L 与高 h,计算其体积 V 的近似公式 V L2h,它实际上是将圆锥体积公式中的圆周率 近似取为3,那么,近似公式 V L2h 相当于将圆锥体积公式中的 近似取为( )A B C D11已知 , ,则“ ”是“ ”的( ),|cos|A. 充分必要条件 B. 充分不必要条件 C. 必要不
4、充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.12数列 1, , , , , , , , , ,的前 100 项的和等于( )A B C D二、填空题13设向量 =(1,3), =(2,4), =( 1,2),若表示向量 4 ,4 2 ,2( ), 的有向线段首尾相接能构成四边形,则向量 的坐标是 14设 MP 和 OM 分别是角 的正弦线和余弦线,则给出的以下不等式:MP OM0;OM0MP;OM MP 0;MP0OM,其中正确的是 (把所有正确的序号都填上)15(本小题满分 12 分)点 M(2pt,2
5、pt 2)(t 为常数,且 t0)是拋物线 C:x 22py(p0)上一点,过M 作倾斜角互补的两直线 l1 与 l2 与 C 的另外交点分别为 P、Q.(1)求证:直线 PQ 的斜率为 2t;(2)记拋物线的准线与 y 轴的交点为 T,若拋物线在 M 处的切线过点 T,求 t 的值16已知命题 p:xR,x 2+2x+a0,若命题 p 是假命题,则实数 a 的取值范围是 (用区间表示)17某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 18已知函数 f(x)=cosxsinx,给出下列四个结论:精选高
6、中模拟试卷第 3 页,共 18 页若 f(x 1)= f(x 2),则 x1=x2;f(x)的最小正周期是 2;f(x)在区间 , 上是增函数;f(x)的图象关于直线 x= 对称其中正确的结论是 三、解答题19(本小题满分 12 分)如图长方体 ABCDA 1B1C1D1 中,AB16,BC10,AA 1 8,点 E,F 分别在 A1B1,D 1C1 上,A 1E4,D 1F8,过点 E,F,C 的平面 与长方体的面相交,交线围成一个四边形(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面 将长方体分成的两部分体积之比20已知数列a n满足 a1= , an+1=an+ ,数列b
7、n满足 bn=()证明:b n(0,1)()证明: =精选高中模拟试卷第 4 页,共 18 页()证明:对任意正整数 n 有 an 21已知椭圆 : (ab0)过点 A(0,2),离心率为 ,过点 A 的直线 l 与椭圆交于另一点M(I)求椭圆 的方程;(II)是否存在直线 l,使得以 AM 为直径的圆 C,经过椭圆 的右焦点 F 且与直线 x2y2=0 相切?若存在,求出直线 l 的方程;若不存在,请说明理由22在平面直角坐标系 xOy 中,点 P(x,y)满足 =3,其中 =(2x+3,y), =(2x3,3y)(1)求点 P 的轨迹方程;(2)过点 F(0,1)的直线 l 交点 P 的轨
8、迹于 A,B 两点,若 |AB|= ,求直线 l 的方程精选高中模拟试卷第 5 页,共 18 页23已知数列a n的前 n 项和 Sn=2n219n+1,记 Tn=|a1|+|a2|+|an|(1)求 Sn 的最小值及相应 n 的值;(2)求 Tn24(本小题满分 13 分)如图,已知椭圆 C: 的离心率为 ,以椭圆 的左顶点 为圆心作圆 :21(0)xyab32CT( ),设圆 与椭圆 交于点 、 _k.Com2()xyr0TCMN(1)求椭圆 的方程;(2)求 的最小值,并求此时圆 的方程;TMN(3)设点 是椭圆 上异于 、 的任意一点,且直线 , 分别与 轴交于点 ( 为坐标PNPxR
9、S、 O原点),求证: 为定值 ORS TSRNMPyxO【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力精选高中模拟试卷第 6 页,共 18 页精选高中模拟试卷第 7 页,共 18 页金寨县实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】连结 交于点 ,取 的中点 ,连结 ,则 ,所以 底面 ,则,ACDEPCOEPAOEABCD到四棱锥的所有顶点的距离相等,即 球心,均为 ,所以由球的体O 221182PC积可得 ,解
10、得 ,故选 B23414(8)316P7A2 【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系 31y2xz,直线系在可行域内的两个临界点分别为 )2,0(A和 ),1(C,当直线过 A点时, 34zx,当直线过 C点时, 3213zxy,即的取值范围为 3,4,所以 Z的最小值为 4.故本题正确答案为 B.考点:线性规划约束条件中关于最值的计算.3 【答案】A精选高中模拟试卷第 8 页,共 18 页【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.4 【答案】C【解析】解:f(x)0x 2x201x2,f(x 0)01 x02,即
11、 x01,2,在定义域内任取一点 x0,x 05,5,使 f(x 0)0 的概率 P= =故选 C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键5 【答案】A【解析】解:整理抛物线方程得 x2= y,p=抛物线方程开口向下,准线方程是 y= ,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置6 【答案】B【解析】考点:三角恒等变换7 【答案】A精选高中模拟试卷第 9 页,共 18 页【解析】试题分析:函数 向右平移个单位得出 的图象,又 是偶函数,对称轴方程)1(xfy )(xfy)1(xfy为 , 的对
12、称轴方程为 .故选 A0x1x考点:函数的对称性.8 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.9 【答案】D【解析】解:若 a0b,则 ,故 A 错误;若 a0b 且 a,b 互为相反数,则|a|=
13、|b| ,故 B 错误;若 a0b 且 a,b 互为相反数,则 a2b 2,故 C 错误;函数 y=x3 在 R 上为增函数,若 ab,则 a3b 3,故 D 正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题10【答案】B【解析】解:设圆锥底面圆的半径为 r,高为 h,则 L=2r, = (2r) 2h,= 故选:B11【答案】A.【解析】 ,设 , ,|cos|cos|cs()|cosfxx,显然 是偶函数,且在 上单调递增,故 在 上单调递减, ,()fx0,()fx,0()|ff精选高中模拟试卷第 10 页,共 18 页故是充分必要条件,故
14、选 A.12【答案】A【解析】解:=1故选 A二、填空题13【答案】 (2, 6) 【解析】解:向量 4 ,4 2 ,2( ), 的有向线段首尾相接能构成四边形,则向量 =4 +4 2 +2( )=(6 +4 4 )= 6(1 , 3)+4(2,4)4( 1,2)=(2,6)=(2, 6),故答案为:(2, 6)【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题14【答案】 【解析】解:由 MP,OM 分别为角 的正弦线、余弦线,如图, ,OM0MP故答案为:精选高中模拟试卷第 11 页,共 18 页【点评】本题的考点是三角函数线,考查用作图的方法比较三角函
15、数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小15【答案】【解析】解:(1)证明:l 1 的斜率显然存在,设为 k,其方程为 y2pt 2k(x2pt)将与拋物线 x22py 联立得,x22pkx4p 2t(kt)0,解得 x12pt, x22p(kt),将 x22p(kt )代入 x22py 得 y22p(kt) 2,P 点的坐标为(2p(kt), 2p(kt) 2)由于 l1 与 l2 的倾斜角互补,点 Q 的坐标为(2p(kt),2p(kt) 2),kPQ 2t,2p( k t)2 2p(k t)22p( k t) 2p(k t)即直
16、线 PQ 的斜率为2t.(2)由 y 得 y ,x22pxp拋物线 C 在 M(2pt,2pt 2)处的切线斜率为 k 2t.2ptp其切线方程为 y2pt 22t(x2pt ),又 C 的准线与 y 轴的交点 T 的坐标为( 0, )p2 2pt22t(2pt)p2精选高中模拟试卷第 12 页,共 18 页解得 t ,即 t 的值为 .121216【答案】 (1,+) 【解析】解:命题 p:xR ,x 2+2x+a0,当命题 p 是假命题时,命题p:xR,x 2+2x+a0 是真命题;即=4 4a0,a1;实数 a 的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定
17、的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目17【答案】 12 【解析】解:设两者都喜欢的人数为 x 人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10 x)人,由此可得(15x)+ (10x)+x+8=30 ,解得 x=3,所以 15x=12,即所求人数为 12 人,故答案为:1218【答案】 【解析】解:函数 f(x)=cosxsinx= sin2x,对于,当 f(x 1)= f(x 2)时,sin2x 1=sin2x2=sin(2x 2)2x1=2x2+2k,即 x1+x2=k,kZ,故错误;对于,由函数 f(x)= sin2x 知最小正周期 T=,故错误;对于,令
18、 +22x +2k,kZ 得 +kx +k,kZ当 k=0 时,x , ,f(x)是增函数,故 正确;对于,将 x= 代入函数 f(x)得,f( )= 为最小值,精选高中模拟试卷第 13 页,共 18 页故 f(x)的图象关于直线 x= 对称, 正确综上,正确的命题是故答案为:三、解答题19【答案】【解析】解:(1)交线围成的四边形 EFCG(如图所示)(2)平面 A1B1C1D1平面 ABCD,平面 A1B1C1D1EF ,平面 ABCDGC,EFGC,同理 EGFC.四边形 EFCG 为平行四边形,过 E 作 EMD 1F,垂足为 M,EMBC10,A1E4,D 1F8,MF4.GCEF
19、,EM2 MF2 102 42 116GB 4(事实上 RtEFMRtCGB)GC2 BC2 116 100过 C1 作 C1HFE 交 EB1 于 H,连接 GH,则四边形 EHC1F 为平行四边形,由题意知,B1HEB 1EH1284 GB.平面 将长方体分成的右边部分由三棱柱 EHG-FC1C 与三棱柱 HB1C1GBC 两部分组成其体积为 V2V 三棱柱 EHG-FC1CV 三棱柱 HB1C1GBCSFC 1CB1C1S GBCBB1 8810 4108 480,1212平面 将长方体分成的左边部分的体积 V1V 长方体 V 216108480800.精选高中模拟试卷第 14 页,共
20、18 页 ,V1V2800480 53其体积比为 ( 也可以)533520【答案】 【解析】证明:()由 bn= ,且 an+1=an+ ,得 , ,下面用数学归纳法证明:0b n1由 a1= (0,1),知 0b 11,假设 0b k1,则 ,0b k1, ,则 0b k+11综上,当 nN*时,b n(0, 1);()由 ,可得, , = = 故 ;()由()得:,故 由 知,当 n2 时,精选高中模拟试卷第 15 页,共 18 页= 【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维
21、能力和灵活处理问题的能力,是压轴题21【答案】 【解析】解:()依题意得 ,解得 ,所以所求的椭圆方程为 ;()假设存在直线 l,使得以 AM 为直径的圆 C,经过椭圆后的右焦点 F 且与直线 x2y2=0 相切,因为以 AM 为直径的圆 C 过点 F,所以AFM=90 ,即 AFAM,又 =1,所以直线 MF 的方程为 y=x2,由 消去 y,得 3x28x=0,解得 x=0 或 x= ,所以 M(0,2)或 M( , ),(1)当 M 为(0, 2)时,以 AM 为直径的圆 C 为:x 2+y2=4,则圆心 C 到直线 x2y2=0 的距离为 d= = ,所以圆 C 与直线 x2y2=0
22、不相切;(2)当 M 为( , )时,以 AM 为直径的圆心 C 为( ),半径为 r= = ,所以圆心 C 到直线 x2y2=0 的距离为 d= =r,精选高中模拟试卷第 16 页,共 18 页所以圆心 C 与直线 x2y2=0 相切,此时 kAF= ,所以直线 l 的方程为 y= +2,即 x+2y4=0,综上所述,存在满足条件的直线 l,其方程为 x+2y4=0【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在22【答案】 【解析】解:(1)由题意, =(2x+3)(2x3
23、)+3y 2=3,可化为 4x2+3y2=12,即: ;点 P 的轨迹方程为 ;(2)当直线 l 的斜率不存在时,|AB|=4,不合要求,舍去;当直线 l 的斜率存在时,设方程为 y=kx+1,A(x 1,y 1),B(x 2,y 2),代入椭圆方程可得:(4+3k 2)x 2+6kx9=0,x 1+x2= ,x 1x2= ,|AB|= |x1x2|= = ,k= ,直线 l 的方程 y= x+1【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题23【答案】 【解析】解:(1)S n=2n219n+1=2 ,n=5 时,
24、S n 取得最小值 =44(2)由 Sn=2n219n+1,精选高中模拟试卷第 17 页,共 18 页n=1 时,a 1=219+1=16n2 时, an=SnSn1=2n219n+12(n1) 219(n1)+1=4n21由 an0,解得 n5n6 时,a n0n5 时,T n=|a1|+|a2|+|an|=(a 1+a2+an)=S n=2n2+19n1n6 时, Tn=(a 1+a2+a5)+a 6+an=2S5+Sn=2n219n+89Tn= 【点评】本题考查了等差数列的通项公式及其前 n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题24【答案】【解析】(1)依题意,得 2a, 3ce,1,32cbc;故椭圆 C的方程为 4xy (3 分)精选高中模拟试卷第 18 页,共 18 页(3)设 由题意知: , .),(0yxP01x01y直线 的方程为M),(0y令 得 ,同理: ,y10xR 10yxxS. (10 分)21021yS又点 在椭圆上,故P,,)(4),(42121020xx,4)(42102100yySR,RSRSOxx即 为定值. (13 分)