收藏 分享(赏)

吉首市外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9506014 上传时间:2019-08-11 格式:DOC 页数:17 大小:723KB
下载 相关 举报
吉首市外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
吉首市外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
吉首市外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
吉首市外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
吉首市外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页吉首市外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图,在正方体 中, 是侧面 内一动点,若 到直线 与直线 的距1ABCDP1BCPBC1D离相等,则动点 的轨迹所在的曲线是( )PD1 C1 A1 B1 P D C A B A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.2 若复数 的实部与虚部相等,则实数 等于( )bib(A) ( B ) (C) (D) 3113123 设 是递增等差数列,前三项的和为 12,前三项的积为

2、 48,则它的首项是( )naA1 B2 C4 D64 从 1、2、3、4、5 中任取 3 个不同的数、则这 3 个数能构成一个三角形三边长的概率为( )A. B.11015C. D.310255 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D6 下列满足“xR ,f (x)+f( x)=0 且 f(x)0”的函数是( )Af(x)= xe|x| Bf(x)=x+sinxCf(x)= Df (x)=x 2|x|精选高中模拟试卷第 2 页,共 17 页7 已知函数 关于直线 对称 , 且

3、 ,则 的最小值()sin3cosfxax612()4fx12x为 A、 B、 C、 D、656238 某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 9 将函数 f(x)=3sin(2x+)( )的图象向右平移 ( 0)个单位长度后得到函数 g(x)的图象,若 f(x),g(x)的图象都经过点 P(0, ),则 的值不可能是( )A B C D10已知 f(x)=4+a x1的图象恒过定点 P,则点 P 的坐标是( )A(1,5) B(1,4) C(0,4) D(4,0)11函数 f(x)=tan(2x+ ),则( )A函数最小正周期为 ,且在( , )是

4、增函数B函数最小正周期为 ,且在( , )是减函数C函数最小正周期为 ,且在( , )是减函数D函数最小正周期为 ,且在( , )是增函数12下列命题中的假命题是( )AxR ,2 x10 Bx R,lgx 1 C xN+,(x1) 20 DxR,tanx=2二、填空题13正六棱台的两底面边长分别为 1cm,2cm,高是 1cm,它的侧面积为 14已知集合 21xyxy, , , , 241Bxyyx, , , ,则 AB的元素个数是 .精选高中模拟试卷第 3 页,共 17 页15以抛物线 y2=20x 的焦点为圆心,且与双曲线: 的两条渐近线都相切的圆的方程为 16已知函数 f(x)=x 2

5、+ xb+ (a ,b 为正实数)只有一个零点,则 + 的最小值为 17在空间直角坐标系中,设 , ,且 ,则 .)1,3(,mA)1,(B2|Am18已知函数 f(x)= ,则关于函数 F(x)=f(f(x)的零点个数,正确的结论是 (写出你认为正确的所有结论的序号)k=0 时,F(x)恰有一个零点 k0 时,F (x)恰有 2 个零点k0 时,F(x)恰有 3 个零点 k0 时,F (x)恰有 4 个零点三、解答题19已知抛物线 C:x 2=2py(p0),抛物线上一点 Q(m, )到焦点的距离为 1()求抛物线 C 的方程()设过点 M(0,2)的直线 l 与抛物线 C 交于 A,B 两

6、点,且 A 点的横坐标为 n(n N*)()记AOB 的面积为 f(n),求 f(n)的表达式()探究是否存在不同的点 A,使对应不同的AOB 的面积相等?若存在,求点 A 点的坐标;若不存在,请说明理由20(本小题满分 13 分)在四棱锥 中,底面 是梯形, , , , ,PABCDAB/DC2AB2D2ABC为 的中点F()在棱 上确定一点 ,使得 平面 ;E/CP()若 ,求三棱锥 的体积6F精选高中模拟试卷第 4 页,共 17 页ABCDPF21某单位为了了解用电量 y 度与气温 x之间的关系,随机统计了某 4 天的用电量与当天气温气温() 14 12 8 6用电量(度) 22 26

7、34 38(1)求线性回归方程;( )(2)根据(1)的回归方程估计当气温为 10时的用电量附:回归直线的斜率和截距的最小二乘法估计公式分别为: = , = 精选高中模拟试卷第 5 页,共 17 页22某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房第一年建新住房 am2,第二年到第四年,每年建设的新住房比前一年增长 100%,从第五年起,每年建设的新住房都比前一年减少 am2;已知旧住房总面积为 32am2,每年拆除的数量相同()若 10 年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(),求前 n(1 n10 且 nN)年新建住房总面积

8、Sn23A=x|x 23x+2=0,B=x|ax2=0,若 BA,求 a24中国高铁的某个通讯器材中配置有 9 个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为 X,求 X 的数学期望,并求该通讯器械正常工作的概率 P(列代数式表示)()现为改善通讯器械的性能,拟增加 2 个元件,试分析这样操作能否提高通讯器械的有效率精选高中模拟试卷第 6 页,共 17 页精选高中模拟试卷第 7 页,共 17 页吉首市外国语学校 2018-2019 学年高二上

9、学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D. 第卷(共 110 分)2 【答案】C 【解析】 i,因为实部与虚部相等,所以 2b12b,即 b .故选 C.b i2 i(b i)(2 i)(2 i)(2 i) 2b 15 2 b5 133 【答案】B【解析】试题分析:设 的前三项为 ,则由等差数列的性质,可得 ,所以 ,na123,a132a1232aa解得 ,由题意得 ,解得 或 ,因为 是递增的等差数列,所以24138132613an,故选 B13,6a考点:等差数列的性质4 【答案】【解析】解析:选 C.从 1、2 、3、4、5 中任取 3 个不同的数有下面 10 个不同

10、结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概精选高中模拟试卷第 8 页,共 17 页率 P .3105 【答案】A【解析】考点:斜二测画法6 【答案】A【解析】解:满足“xR ,f(x)+f(x)=0,且 f(x)0”的函数为奇函数,且在 R 上为减函数,A 中函数 f(x)=xe |x|,满足 f(x)=f(x),即函数为奇函数,且 f(x)= 0 恒成立,故在 R 上为减函数,B 中函数 f(

11、x)=x+sinx,满足 f(x)=f(x),即函数为奇函数,但 f(x)=1+cosx0,在 R 上是增函数,C 中函数 f(x)= ,满足 f( x)=f(x),故函数为偶函数;D 中函数 f(x)=x 2|x|,满足 f( x)=f (x),故函数为偶函数,故选:A7 【答案】D 【解析】:2 3()sin3cos3sin()ta)fxaxax12,46f kf对 称 轴 为112212min5,6 3xkxx8 【答案】 A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为 3 和 4,直角x2y3=0x+y3=0y=2xx=mP xyO1234

12、512345精选高中模拟试卷第 9 页,共 17 页腰为 1,棱柱的侧棱长为 1,故选 A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.9 【答案】C【解析】函数 f(x)=sin(2x+)( )向右平移 个单位,得到 g(x)=sin (2x+2),

13、因为两个函数都经过 P(0, ),所以 sin= ,又因为 ,所以 = ,所以 g(x)=sin(2x+ 2),sin( 2)= ,所以 2=2k+ ,kZ,此时 =k,k Z,或 2=2k+ ,kZ,此时 =k ,kZ,故选:C【点评】本题考查的知识点是函数 y=Asin(x+)的图象变换,三角函数求值,难度中档10【答案】A【解析】解:令 x1=0,解得 x=1,代入 f(x)=4+a x1得, f(1)=5,则函数 f(x)过定点(1,5)故选 A11【答案】D【解析】解:对于函数 f(x) =tan(2x+ ),它的最小正周期为 ,精选高中模拟试卷第 10 页,共 17 页在( , )

14、上,2x+ ( , ),函数 f(x)=tan(2x+ )单调递增,故选:D12【答案】C【解析】解:AxR,2 x1= 0 正确;B当 0x10 时,lgx1 正确;C当 x=1,(x1) 2=0,因此不正确;D存在 xR,tanx=2 成立,正确综上可知:只有 C 错误故选:C【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题二、填空题13【答案】 cm2 【解析】解:如图所示,是正六棱台的一部分,侧面 ABB1A1为等腰梯形, OO1为高且 OO1=1cm,AB=1cm,A 1B1=2cm取 AB 和 A1B1的中点 C,C 1,连接 OC,CC 1,O 1C1,则 C1

15、C 为正六棱台的斜高,且四边形 OO1C1C 为直角梯形根据正六棱台的性质得 OC= ,O 1C1= = ,CC 1= = 又知上、下底面周长分别为 c=6AB=6cm,c =6A1B1=12cm正六棱台的侧面积:S= = (cm 2)故答案为: cm2精选高中模拟试卷第 11 页,共 17 页【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养14【答案】【解析】试题分析:在平面直角坐标系中画出圆与抛物线的图形,可知它们有个交点 120864224681022015105 5101520fx() =42 1考点:集合的基本运算.15【答案】 (x5) 2+

16、y2=9 【解析】解:抛物线 y2=20x 的焦点坐标为(5,0),双曲线: 的两条渐近线方程为 3x4y=0由题意,r =3,则所求方程为(x 5) 2+y2=9精选高中模拟试卷第 12 页,共 17 页故答案为:(x5) 2+y2=9【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题16【答案】 9+4 【解析】解:函数 f(x)=x 2+ xb+ 只有一个零点,=a 4(b+ )=0,a+4b=1,a,b 为正实数, + =( + )(a+4b)=9+ +9+2 =9+4当且仅当 = ,即 a= b 时取等号, + 的最小值为:9+4故答案为:9+4【点评】

17、本题考查基本不等式,得出 a+4b=1 是解决问题的关键,属基础题17【答案】1【解析】试题分析: ,解得: ,故填:1.213122mAB 1m考点:空间向量的坐标运算18【答案】 【解析】解:当 k=0 时, ,当 x0 时,f(x )=1,则 f(f (x)=f(1)= =0,此时有无穷多个零点,故错误;当 k0 时,()当 x0 时,f(x)=kx+11,此时 f(f (x)=f(kx+1)= ,令 f(f(x)=0,可得:x=0;精选高中模拟试卷第 13 页,共 17 页()当 0x1 时, ,此时f(f(x)=f( )= ,令 f(f (x)=0,可得:x= ,满足;()当 x1

18、时, ,此时 f(f (x)=f( )=k +10,此时无零点综上可得,当 k0 时,函数有两零点,故正确;当 k0 时,()当 x 时,kx+10,此时 f(f(x)=f(kx+1)=k(kx+1)+1,令 f(f(x)=0,可得: ,满足;()当 时,kx+10,此时 f(f(x)=f(kx+1)= ,令 f(f(x)=0,可得:x=0,满足;()当 0x1 时, ,此时 f(f(x)=f( )= ,令 f(f(x)=0,可得:x= ,满足;()当 x1 时, ,此时 f(f (x)=f( )=k +1,令 f(f(x)=0 得:x=1,满足;综上可得:当 k0 时,函数有 4 个零点故错

19、误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题三、解答题19【答案】 【解析】解:()依题意得|QF|=y Q+ = + =1,解得 p=1,抛物线 C 的方程为 x2=2y;()()直线 l 与抛物线 C 交于 A、B 两点,直线 l 的斜率存在,设 A(x 1,y 1),B(x 2,y 2),直线 l 的方程为:y=kx+2,联立方程组 ,化简得:x 22kx4=0,精选高中模拟试卷第 14 页,共 17 页此时=( 2k) 241(4)=4(k 2+4)0,由韦达定理,得:x 1+x2=2k,x 1x2=4,S AOB = |OM

20、|x1x2|= 2=2 (*)又A 点横坐标为 n,点 A 坐标为 A(n, ),又直线过点 M(0,2),故 k= = ,将上式代入(*)式,可得:f(n)=2=2=2=n+ ( nN*);()结论:当 A 点坐标为( 1, )或(4,8)时,对应不同的AOB 的面积相等理由如下:设存在不同的点 Am(m, ),A n(n, )(m n,m、nN *),使对应不同的AOB 的面积相等,则 f(m )=f (n),即 m+ =n+ ,化简得:mn= = ,又mn,即 mn0,1= ,即 mn=4,解得 m=1,n=4 或 m=4,n=1 ,此时 A 点坐标为(1, ),( 4,8)精选高中模拟

21、试卷第 15 页,共 17 页【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题20【答案】(本小题满分 13 分)解:()当 为 的中点时, 平面 (1 分)EPB/CEPAD连结 、 ,那么 , FC/FA2B , , , , (3 分)/DA12/FC/EF又 平面 , 平面 , 平面 (5 分)EPDP/PA()设 为 的中点,连结 、 , , , OODO在直角三角形 中, , 又 , , ,B12ABBPOAB, 平面

22、 (10 分)PA,222(6)2A三棱锥 的体积 (13 分)BDF113PBDFPABDVABCDOEF21【答案】 【解析】解:(1)由表可得: ;又 ; , ;线性回归方程为: ;精选高中模拟试卷第 16 页,共 17 页(2)根据回归方程:当 x=10 时,y=210+50=30;估计当气温为 10时的用电量为 30 度【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程22【答案】 【解析】解:(I)10 年后新建住房总面积为 a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a设每年拆除的旧住房为 xm2,则 42a+(32a10x)=232a,解得

23、x=a,即每年拆除的旧住房面积是 am2()设第 n 年新建住房面积为 a,则 an=所以当 1n4 时,S n=(2 n1) a;当 5n10 时,S n=a+2a+4a+8a+7a+6a+(12 n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型23【答案】 【解析】解:解:集合 A=x|x23x+2=0=1,2BA,(1)B= 时, a=0(2)当 B=1时,a=2(3)当 B=2时,a=1故 a 值

24、为:2 或 1 或 024【答案】 【解析】解:()由题意可知:X B(9,p),故 EX=9p在通讯器械配置的 9 个元件中,恰有 5 个元件正常工作的概率为: 在通讯器械配置的 9 个元件中,恰有 6 个元件正常工作的概率为: 精选高中模拟试卷第 17 页,共 17 页在通讯器械配置的 9 个元件中,恰有 7 个元件正常工作的概率为: 在通讯器械配置的 9 个元件中,恰有 8 个元件正常工作的概率为: 在通讯器械配置的 9 个元件中,恰有 9 个元件正常工作的概率为: 通讯器械正常工作的概率 P= ;()当电路板上有 11 个元件时,考虑前 9 个元件,为使通讯器械正常工作,前 9 个元件

25、中至少有 4 个元件正常工作若前 9 个元素有 4 个正常工作,则它的概率为: 此时后两个元件都必须正常工作,它的概率为: p2;若前 9 个元素有 5 个正常工作,则它的概率为: 此时后两个元件至少有一个正常工作,它的概率为: ;若前 9 个元素至少有 6 个正常工作,则它的概率为: ;此时通讯器械正常工作,故它的概率为:P= p2+ + ,可得 PP= p2+ ,= = 故当 p= 时,P=P ,即增加 2 个元件,不改变通讯器械的有效率;当 0p 时,PP ,即增加 2 个元件,通讯器械的有效率降低;当 p 时,PP ,即增加 2 个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报