1、考研数学 线性代数 内部习题讲义 金典本文由 penis_vagina贡献pdf文档可能在 WAP端浏览体验不佳。建议您优先选择 TXT,或下载源文件到本机查看。You Stupid Cunt ! cunnilingus penis vagina第一章行列式1.利用对角线法则计算下列三阶行列式: 2 0 1 a b (1) 14 ?1 ; ?1 8 3 1 b b22c (2) b c a c a b y x+ y x x+ y x . y1 (3) a a21 c ; c20 8 1 3x (4) y x+ y解 (1) 14 ? 1 = 2 ( ?4) 3 + 0 ( ?1) ( ?1)
2、+ 1 1 810 1 3 ? 2 ( ?1) 8 ? 1 ( ?4) ( ?1) = ? 24 + 8 + 16 ? 4 =? 4a b c(2) bc a = acb + bac + cba ? bbb ? aaa ? ccc= 3abc ? a 3 ? b 3 ? c 3c a b1(3) a11a2b b2c = bc 2 + ca 2 + ab 2 ? ac 2 ? ba 2 ? cb 2 c2 = (a ? b )(b ? c )(c ? a ) y x+ y x x+ y x yx (4) y x+ y= x ( x + y ) y + yx( x + y ) + ( x + y
3、 ) yx ? y 3 ? ( x + y )3 ? x 3 = 3 xy( x + y ) ? y 3 ? 3 x 2 y ? 3 y 2 x ? x 3 ? y 3 ? x 31You Stupid Cunt ! cunnilingus penis vagina= ?2( x 3 + y 3 )2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 ( 2n ? 1) 2 4 ( 2n) ; (6)1 3 ( 2n ? 1) ( 2n) ( 2n ? 2) 2. 解(1)逆序数为
4、0 (2)逆序数为 4:4 1,4 3,4 2,3 2 (3)逆序数为 5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为 3:2 1,4 1,4 3 n( n ? 1) (5)逆序数为 : 2 3 2 1个 5 2,5 4 2 个 7 2,7 4,7 6 3 个 ( 2n ? 1) 2, ( 2n ? 1) 4, ( 2n ? 1) 6, ( 2n ? 1) ( 2n ? 2) ( n ? 1) 个 (6)逆序数为 n( n ? 1) 3 2 1 个 5 2,5 4 2个 ( 2n ? 1) 2, ( 2n ? 1) 4, ( 2n ? 1) 6, ( 2n ? 1) ( 2n ?
5、2) ( n ? 1) 个 4 2 1 个 6 2,6 4 2个 ( 2n) 2, ( 2n) 4, ( 2n) 6, ( 2n) ( 2n ? 2) ( n ? 1) 个 3.写出四阶行列式中含有因子 a11a 23 的项. 解 由定义知,四阶行列式的一般项为 ( ?1) t a1 p1 a 2 p2 a 3 p3 a 4 p4 ,其中 t 为 p1 p2 p3 p4 的逆序数由于 p1 = 1, p2 = 3 已固定, p1 p2 p3 p4 只能形如 13 ,即 1324 或 1342.对应的 t 分别为2You Stupid Cunt ! cunnilingus penis vagin
6、a0 + 0 + 1 + 0 = 1或 0 + 0 + 0 + 2 = 2 ? a11a 23 a 32 a 44 和 a11a 23 a 34 a 42 为所求.4.计算下列各行列式: ? 4 1 2 4? ? 1 2 0 2? ?; (1) ? ?10 5 2 0? ? ? ? 0 1 1 7? ab ac (3) ? bd ? cd ? ? bf cf ?解2 1 4 1? ?3 ? 1 2 1? ?; (2) ? ? 1 2 3 2? ? ? ? 5 0 6 2? 1 0 0? ?a ae ? ? 1 0? ? ; (4) ? ? 1 b ? de ? ? 0 ? 1 c 1? ? e
7、f ? ? ? ? 0 ? 1 d? ?04(1)1 2 441 2 ? 10 2 3 0 0 2 2 ? 14 1 01 10 0 4 = 1 102 0 2 c2 ? c3 1 5 2 0 c4 ? 7c 3 10 1 1 7 0 ? 1 ? 10 2 2 ( ?1) 4+ 3 3 ? 144 ? 1 10 9 9 10 c2 + c3 2 ?2 0 0 ? 2 =0 = 1 c1 + 1 c 3 2 10 3 14 17 17 14 2(2)14 1214 03 ? 1 2 1 c4 ? c2 3 ? 1 2 2 1 2 3 2 1 2 3 0 5 0 6 2 5 0 6 23You S
8、tupid Cunt ! cunnilingus penis vagina2 1 2ab(3) bd1 2 1ac ? cd cf4 0 3 0 4 0ae ? ef ?b b2 1 0c ?c c1 2 0e e4 0 3 0 0 0=0r4 ? r2 3 ? 1 2 2r4 ? r1 3 ? 1 2 2de = adf bbf ?1= adfbce 1e11 1 ? 1 1 = 4abcdef 1 ?1 0 1 + ab a 0 ?1 1 0 b ?1 0 c 1 0 0 ?1 d 0 1 + ab a ad c 3 + dc 2 ?1 1 c 1 + cd d 0 ?1 01 0 a ?
9、1 b 1 (4) 0 ?1 c 0 0 ?10 0 r1 + ar2 1 d 1 + ab a 2+1 ?1 = ( ?1)( ?1) c 0 ?1= ( ?1)( ?1) 3+ 21 + ab ad = abcd + ab + cd + ad + 1 ? 1 1 + cd5.证明: a2ab b 2 (1) 2a a + b 2b = (a ? b ) 3 ; 1 1 1 ax + by ay + bz az + bx x 3 3 (2) ay + bz az + bx ax + by = (a + b ) y az + bx ax + by ay + bz z y z x z x; y4
10、You Stupid Cunt ! cunnilingus penis vaginaa2 b2 c2 d2 1 (a + 1) 2 (b + 1) 2 ( a + 2) 2 ( b + 2) 2 ( a + 3) 2 ( b + 3) 2 ( c + 3) 2 ( d + 3) 2(3)(c + 1) 2 (c + 2) 2 (d + 1) 2 (d + 2) 2 1 1 1= 0;(4)a b c d a 2 b2 c 2 d 2 a 4 b4 c 4 d 4 = (a ? b)(a ? c )(a ? d )(b ? c )(b ? d ) ? (c ? d )(a + b + c + d
11、 ) ; x ?1 0 0 0 0 x 0 0 ?1 = x n + a 1 x n ?1 + 0 a n ?1 0 a n? 2 x a2 ?1 x + a1 b2 ? a 2 2b ? 2a 0 + a n ?1 x + a n .(5)0 an 证明a 2 ab ? a 2 c 2 ? c1 2a b ? a (1) 左边 = c 3 ? c1 1 0 = ( ?1)3+1ab ? a 2 b?ab2 ? a 22b ? 2a a b+a = (a ? b ) 3 = 右边 = (b ? a )(b ? a ) 1 2 x ay + bz az + bx y ay + bz az + b
12、x 按第一列 a y az + bx ax + by + b z az + bx ax + by (2) 左边 分开 z ax + by ay + bz x ax + by ay + bz分别再分x ay + bz a 2 y az + bx z ax + byz y x +0+0+ bz y xz az + bx x ax + by y ay + bz5You Stupid Cunt ! cunnilingus penis vagina分别再分x a3 y zy z xz y x + b3 z y x y z xz x yx y zx = a3 y zy z xz x x + b3 y y
13、zz x ( ?1) 2 = 右边 ya2 b2 (3) 左边 = 2 c d2 a2 c 2 ? c1 b 2 c 3 ? c1 c 2 c 4 ? c1 d 2a 2 + ( 2a + 1) (a + 2) 2 b 2 + ( 2b + 1) c 2 + ( 2c + 1) ( b + 2) 2 ( c + 2) 2( a + 3) 2 ( b + 3) 2 ( c + 3) 2 ( d + 3) 2d 2 + ( 2d + 1) (d + 2) 2 2a + 1 4a + 4 6a + 9 2 b + 1 4 b + 4 6b + 9 2c + 1 4c + 4 6c + 9 2 d +
14、 1 4d + 4 6d + 9 a b c d 4a + 4 6a + 9 4b + 4 6b + 9 4c + 4 6c + 9 4d + 4 6d + 9 a 4 9 a2 b 4 9 b2 + c 4 9 c2a2 按第二列 b 2 2 分成二项 c 2 d2+a2 b21 4a + 4 6a + 9 1 4b + 4 6b + 9c 2 1 4c + 4 6c + 9 d 2 1 4d + 4 6d + 9 6a 6b =0 6cc 3 ? 4c 2 a 2 第一项 c 4 ? 6c 2 b 21 4a 1 4b 1 4cc 3 ? 4c 2 c 2 第二项 c 4 ? 9c 2 d
15、 2 d 4 9 1 0 0 a b?a c?a (4) 左边 = 2 a b2 ? a 2 c 2 ? a 2 a 4 b4 ? a 4 c 4 ? a 4 b?a c?a c2 ? a2 = b2 ? a 2 b 2 (b 2 ? a 2 ) c 2 (c 2 ? a 2 )d 2 1 4d 6d 0 d ?a d 2 ? a2 d 4 ? a4 d ?a d 2 ? a2 d 2 (d 2 ? a 2 )6You Stupid Cunt ! cunnilingus penis vagina1 1 1 c+a d+a = (b ? a )(c ? a )(d ? a ) b + a b 2
16、 (b + a ) c 2 (c + a ) d 2 (d + a )= (b ? a )(c ? a )(d ? a ) 1 0 0 b+a c?b d ?b b 2 (b + a ) c 2 (c + a ) ? b 2 (b + a ) d 2 (d + a ) ? b 2 (b + a )1 (c 2 + bc + b 2 ) + a (c + b) (d 2 + bd + b 2 ) + a (d + b ) = (a ? b )(a ? c )(a ? d )(b ? c )(b ? d ) (c ? d )(a + b + c + d ) (5) 用数学归纳法证明 ?1 x 当
17、n = 2时, D2 = = x 2 + a1 x + a 2 , 命题成立 . a 2 x + a1 假设对于 ( n ? 1) 阶行列式命题成立,即 Dn?1 = x n?1 + a1 x n? 2 + + a n? 2 x + a n?1 , 则 Dn 按第 1列展开 : ?1 0 0 0Dn = xDn?1 + a n ( ?1) n+1 x ?1 0 x 0 ?1 = xDn?1 + a n = 右边= (b ? a )(c ? a )(d ? a )(c ? b )(d ? b ) 11 1 所以,对于 n 阶行列式命题成立.6.设 n 阶行列式 D = det(a ij ) ,把
18、 D 上下翻转、或逆时针旋转 90 、或依 副对角线翻转,依次得 a n1 a nna1 n a11a nn, D3 =a nn a n1a1 n,D1 = a11 a1 n, D2 =a n1a11证明 D1 = D2 = ( ?1) 证明 D = det(a ij )n ( n ?1 ) 2D , D3 = D .7You Stupid Cunt ! cunnilingus penis vaginaa n1 D1 = a11 a1 n a nn = ( ?1) a11 a n ?1 n 1 a 21 a1 n a nn a2na11 = ( ?1)n ?1a1 n a2n a nn = a
19、3n a11 a1 n a nnn ( n ?1 ) 2( ?1)n? 2a 21 a n1 a 31= ( ?1) n?1 ( ?1) n? 2( ?1) a n1= ( ?1)1+ 2 + + ( n ? 2 )+ ( n ?1 )同理可证 D2 = ( ?1)n ( n ?1 ) 2a11 a1 nD = ( ?1) D a n1 n ( n ?1 ) n ( n ?1 ) T 2 = ( ?1) D = ( ?1) 2 D a nnn ( n ?1 ) 2D3 = ( ?1)n ( n ?1 ) 2D2 = ( ?1)( ?1)n ( n ?1 ) 2D = ( ?1) n( n?1)
20、 D = D: 7.计算下列各行列式( Dk 为 k阶行列式 )a(1) Dn =1,其中对角线上元素都是 a ,未写出的元素都是 0;1 x(2) Dn =a a x a a a x;a a8You Stupid Cunt ! cunnilingus penis vaginaan a n ?1 a 1 (a ? 1) n (a ? 1) n?1 a ?1 1 (a ? n) n ( a ? n ) n ?1;(3) Dn+1 =a?n 1提示:利用范德蒙德行列式的结果an 0(4) D2 n = 0bn a1 c1 0 b1 d1 0 ;cndn(5) Dn = det(a ij ), 其中
21、 a ij = i ? j ;(6) Dn =1 + a1 1 1 1 + a2 1 11 1 1 + an, 其中 a1a 2an 0 .解a 0(1) Dn =0 a 0 0 00 0 a 0 00 0 0 a 01 0 0 按最后一行展开 0 a0 0 19You Stupid Cunt ! cunnilingus penis vagina0 a ( ?1) n+1 0 0 0 0 a 0 0 0 0 0 0 0 0 a 1 0 0 0a + ( ?1) 2 n ? a a ( n?1)( n?1)( n ?1 )( n ?1 )( 再按第一行展开 )a = ( ?1) n+1 ? (
22、?1) n a ( n? 2 )( n? 2 )(2)将第一行乘 (?1) 分别加到其余各行,得+ a n = a n ? a n? 2 = a n? 2 (a 2 ? 1)x a?x Dn = a ? x a?xa x?a 0 0a 0 x?a 0 0a 0 0 x?a再将各列都加到第一列上,得x + ( n ? 1)a 0 Dn = 0 0a x?a 0 0n ?1a 0 x?a 0 0a 0 0 x?a= x + ( n ? 1)a ( x ? a )(3)从第 n + 1 行开始,第 n + 1 行经过 n 次相邻对换,换到第 1 行,第 n 行经 ( n ? 1) 次对换换到第 2
23、行,经 n + ( n ? 1) + 交换,得+1=n( n + 1) 次行 210You Stupid Cunt ! cunnilingus penis vagina1 a a n ?1 an 1 a ?1 (a ? 1) n?1 (a ? 1) n 1 a?n ( a ? n ) n ?1 (a ? n) nDn+1 = ( ?1)n ( n+1) 2此行列式为范德蒙德行列式Dn+1 = ( ?1) = ( ?1) =n ( n +1 ) 2n ( n+1 ) 2n + 1 i j 1 (a ? i + 1) ? (a ? j + 1)n ( n+1 ) 2n +1 i j 1 ?(i ?
24、 j ) = (?1)( ?1)n + ( n ?1 ) + + 1 2n +1 i j 1 (i ? j )n + 1 i j 1 (i ? j )an 0 a1 c1 00 a1 c1 0 b1 d1bn b1 d1 dnbn?1 0 d n ?1 0 0 dn 0(4) D 2 n = 0cna n ?1 按第一行 0 an 展开 c n ?1 011You Stupid Cunt ! cunnilingus penis vagina0 0 a n ?1 0 a1 b1 c1 d 1 c n ?1 cn 0 都按最后一行展开a n d n D2 n? 2 ? bn c n D2 n? 2
25、由此得递推公式:b n ?1 0+ ( ?1)2 n +1bnd n ?1 0D2 n = (a n d n ? bn c n ) D2 n? 2即D2 n = (a i d i ? bi c i ) D2i=2n而D2 =a1 c1nb1 = a1 d 1 ? b1c1 d1得 (5) a ij = i ? jD2 n = (a i d i ? bi c i )i =10 1 Dn = det(a ij ) = 2 31 0 1 22 1 0 13 2 1 0n?1 n?2 n?3 n?4 0n?1 n? 2 n? 3 n?412You Stupid Cunt ! cunnilingus p
26、enis vagina1 ?1 r1 ? r2 r2 ? r3 , ?1 ?1 1 ?1 ?1 ?1 1 1 ?1 ?1 1 1 1 ?1 1 1 1 c 2 + c1 , c 3 + c1 c4 + c1 , 1 0 0 0 0 = ( ?1) n?1 ( n ? 1)2 n? 2 0 n?1 c1 ? c 2 , c 2 ? c 3 c 3 ? c4 ,1 1 1 11 ?1 ?1 ?1n?1 n? 2 n? 3 n?4 0 0 0 ?2 0 0 ?2 ?2 ?2 ?2 0 ?2n ? 1 2 n ? 3 2n ? 4 2n ? 5 1 + a1 1 1 1 1 + a2 1 (6) Dn
27、 = 1a1 ? a2 0 0 0 0 0 a2 ? a3 0 0 0 0 0 a3 ? a4 0 011 + an 0 00 0 0 0 0 0按最后一列 展开(由下往上)1 ? a n ? 1 a n ?1 0 ? an 1 + an a1 0 0 a2 ? a3 0 0 0 0 a3 ? a4 0 00 0 0 0 ? a n? 2 00 0 0 0 a n? 2 00 0 0 0 0 ? an(1 + a n )(a1 a 2a2 0 a n ?1 ) ? 0 0 013You Stupid Cunt ! cunnilingus penis vaginaa1 ? a2 0 0 0 0
28、a2 ? a3 0 0 0 0 a3 0 0 0 0 0 ? a n ?1 0 0 0 0 a n ?1 ? an+a2 0 0 0a2 ? a3 0 00 a3 ? a4 00 0 0 ? a n ?10 0 0 a n ?1 ? an a n? 3 a n? 2 a n + a2a30 0 0 0 = (1 + a n )(a1 a 2 a n?1 ) + a1 a 2 n 1 = (a1 a 2 a n )(1 + ) i =1 a ian8.用克莱姆法则解下列方程组:x 1 + x 2 + x 3 + x 4 = 5, ? ? x 1 + 2 x 2 ? x 3 + 4 x 4 = ?
29、 2, (1)? ? 2 x 1 ? 3 x 2 ? x 3 ? 5 x 4 = ? 2, ? 3 x1 + x 2 + 2 x 3 + 11 x 4 = 0; ? = 1, ? 5 x1 + 6 x 2 ? = 0, ? x1 + 5 x 2 + 6 x 3 ? = 0, x2 + 5 x3 + 6 x4 ( 2)? ? x 3 + 5 x 4 + 6 x 5 = 0, ? ? x 4 + 5 x 5 = 1. ?14You Stupid Cunt ! cunnilingus penis vagina1 1 1 1 1 1 1 1 1 2 ?1 4 0 1 ?2 3 解 (1) D = =
30、2 ? 3 ?1 ?5 0 ? 5 ? 3 ? 7 3 1 2 11 0 ? 2 ? 1 8 1 0 = 0 0 5 D1 = 1 1 1 1 1 1 1 1 ?2 3 0 1 ?2 3 = ?142 = 0 ? 13 8 0 0 ? 1 ? 54 0 ? 5 14 0 0 0 142 1 1 1 5 1 1 12 2 ?1 4 0 5 0 9 = ? 2 ? 3 ?1 ?5 ? 2 ? 3 ?1 ?5 0 1 2 11 0 1 2 11 ?5 ?1 ?9 1 ?5 ?1 ?91 =0 5 0 9 0 1 2 11 = 0 ? 13 ? 3 ? 23 0 5 0 9 0 1 2 11 0 ?
31、13 ? 3 ? 23 1 ?5 ?1 ?9 1 ?5 ?1 ?9 1 0 0 2 11 = ?142 ? 1 38 0 142=0 0 01 0 02 11 0 = ? 10 ? 46 0 23 120 01 5 1 1 1 5 1 1 1 ? 2 ?1 4 0 ?7 ?2 3 D2 = = 2 ? 2 ? 1 ? 5 0 ? 12 ? 3 ? 7 3 0 2 11 0 ? 15 ? 1 8 1 = 5 1 1 1 5 1 1 0 ?1 3 2 0 ?1 3 2 = = ?284 0 0 23 11 0 0 ? 1 ? 19 0 ? 284 0 0 39 31 0 015You Stupid
32、 Cunt ! cunnilingus penis vagina1 1 5 1 1 2 ?2 4 = ?426 D3 = 2 ?3 ?2 ?5 3 1 0 11 1 1 1 5 1 2 ?1 ?2 = 142 D4 = 2 ?3 ?1 ?2 3 1 2 0 x1 = D1 =1, D x2 = D2 =2, D x3 = D3 =3, D 6 5 1 0 0 6 5 1 x4 = D4 = ?1 D5 1 按最后一行 (2) D = 0 1 5 6 0 5 D ? 0 展开 0 0 1 5 6 0 0 0 0 1 55 6 0 0 0 1 5 6 0 00 0 = 5 D ? 6 D 0 6=
33、 5(5 D ? 6 D ) ? 6 D = 19 D ? 30 D = 65 D ? 114 D = 65 19 ? 114 5 = 665 ( D为行列式 D 中 a11的余子式 , D为 D中 a11的余子式 , D, D类推 )6 5 按第一列 D1 = 0 1 5 6 0 D + 1 展开 0 0 1 5 6 0 1 0 0 1 5 = D + 6 4 = 19 D ? 30 + 6 4 = 15071 6 0 0 0 0 5 6 0 00 6 5 10 0 6 50 0 0 616You Stupid Cunt ! cunnilingus penis vagina5 1 0 0 0
34、 1 0 6 0 01 按第二列 0 ? D2 = 0 0 5 6 0 0 展开 0 0 1 5 6 0 0 1 0 1 56 5 1 00 6 5 10 5 0 0 1 6 ? 6 0 5 5 0 10 0 6 50 0 0 65 6 0 = 1 5 6 ? 5 6 3 = ?65 ? 1080 = ?1145 0 1 5 5 6 1 0 0 1 5 0 0 0 D3 = 0 1 0 6 0 0 0 0 5 6 0 0 1 1 5 1 5 0 0 5 6 0 0按第三列 0 1 6 0 1 5 0 0 + 0 0 5 6 0 1 6 0 展开 0 0 1 5 0 0 5 61 6 0 5 6
35、 0 = 0 5 6 + 6 1 5 0 = 19 + 6 114 = 703 0 1 5 0 1 6 5 6 0 1 0 1 5 6 0 0 D4 = 0 1 5 0 0 0 0 1 0 6 0 0 0 1 5 5 6 0 = ?5 ? 6 1 5 6 = ?395 0 1 5 1 5 6 0 按第四列 展开 ? 5 6 0 00 1 5 0 1 5 6 0 ? 0 0 1 6 0 1 5 0 0 0 0 5 0 0 1 617You Stupid Cunt ! cunnilingus penis vagina5 6 0 0 1 1 5 6 0 01 按最后一列 0 D5 = 0 1 5 6
36、 0 0 展开 0 0 1 5 0 0 0 0 0 1 1 x1 = 1507 ; 665 x2 = ? 1145 ; 665 x3 =5 1 0 06 5 1 00 6 + D = 1 + 211 = 212 5 1x4 = ? 395 ; 665 x4 = 212 665703 ; 665x1 + x 2 + x 3 = 0 ? 9.问 , 取何值时 , 齐次线性方程组 ? x1 + x 2 + x 3 = 0 有非零解? ? x + 2 x + x = 0 ? 1 2 3解D3 = 1 11 1 = ? , 2 11齐次线性方程组有非零解,则 D3 = 0 即 得 ? = 0 = 0 或
37、 = 1不难验证,当 = 0 或 = 1 时, 该齐次线性方程组确有非零解.(1 ? ) x1 ? 2 x 2 + 4 x 3 = 0 ? 10.问 取何值时 , 齐次线性方程组 ? 2 x1 + ( 3 ? ) x 2 + x 3 = 0 ? x + x + (1 ? ) x = 0 ? 1 2 3有非零解? 解1? D= 2 12 4 1? 3? 1 = 2 1 1? 14 ?3+ 1? 1 0 1? 18You Stupid Cunt ! cunnilingus penis vagina= (1 ? ) 3 + ( ? 3) ? 4(1 ? ) ? 2(1 ? )( ?3 ? ) = (1 ? ) 3 + 2(1 ? ) 2 + ? 3齐次线性方程组有非零解,则 D = 0 得 = 0, = 2 或 = 3该齐次线性方程组确有非零解. 不难验证, = 0, = 2或 = 3 时, 当191