1、 2. 简单几何体知识网络简单几何体结构简图画龙点晴概念棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.棱柱的分类: 按侧棱与底面的关系,棱柱可分为:斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.正棱柱:底面是正多边形的直棱柱叫做正棱柱.按底面的多边形的边数可分为: 底面是三角形、四边形、五边形
2、我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱可表示为:棱柱 ABCDE-A/B/C/D/E/,或棱柱 AC/.棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形;(3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方
3、和.正方体: 棱长都相等的长方体叫做正方体 .公式棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长 C 与高 的乘积, 即 , 斜棱柱的hChS直 棱 柱侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面) 的周长 C1 与侧棱长 的乘积,l即 , 棱柱的全面积等于侧面积与两底面积的和.lCS1斜 棱 柱 侧活用实例例1 如图,在平行六面体ABCD-A 1B1C1D1中,已知AB=5, AD=4,AA 1=3,AB AD, A1AB= A1AD= ,3(1)求证:顶点A1在底面ABCD的射影O在BAD的平分线上;(2)求这个平行六面体的表面积.题解(1) 如图,连结A 1O,则A
4、1O底面ABCD.作OMAB交AB于M,作ONAD交AD于N,连结A 1M,A1N.由三垂线定理得A 1MAB,A 1NAD. A 1AM=A 1AN, RtA 1NARtA 1MA. A1M=A1N. OM=ON. 点O在BAD的平分线上.(2) ,23cos1M,23AN侧面AB 1和侧面DC 1的面积都等于4 =6,侧面AD 1和侧面BC 1的面积都等于5 =7.5,23又AB AD, 两底面面积都等于4 =20, 平行六面体的表面积为2(6+7.5)+20=47.5例2 如图,A 1B1C1-ABC是直三棱柱,过点A 1、B、C 1的平面和平面 ABC的交线记作 .l(1)判定直线A
5、1C1和 的位置关系,并加以证明;l(2)若A 1A=1,AB=4,BC=3,ABC=90,求顶点A 1到直线 的距离.l题解(1)根据棱柱的定义知平面A 1B1C1和平面ABC平行.由题设知直线A 1C1=平面A 1B1C1平面A 1BC1,直线 =平面A 1BC1平面ABC.l根据两平面平行的性质定理有 A 1C1.l(2)解法一:过点A 1作A 1E 于E,则A 1E的长为点A 1到 l的距离.l连结AE.由直棱柱的定义知A 1A平面ABC. 直线AE是直线A 1E在平面ABC上的射影.又 在平面ABC上,根据三垂线定理的逆定理有AE .l l由棱柱的定义知 A1C1AC,又 A 1C1
6、, AC.ll作BDAC于D,则BD是RtABC斜边AC上的高,且BD=AE,从而AE=BD= .5234B在RtA 1AE中, A 1A=1,A1AE=90,故点A 1到直线 的距离为 31)(22El513解法二:同解法一得 AC.l由平行直线的性质定理知CAB=ABE,从而有RtABCRtBEA,AE:BC=AB:AC, 以下同解法一.ACB例3 如图,已知A 1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB 1平面DBC1;(2)假设AB 1BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的度数.题解(1)A 1B1C1-ABC是正三棱柱, 四边形B 1BCC1
7、是矩形.连结B 1C交BC 1于E,则B 1E=EC.连结DE.在AB1C中,AD=DC,DEAB 1.又 平面DBC 1, DE 平面DBC 1, AB 1平面DBC 1.1A(2)作DFBC,垂足为F,则DF面B 1BCC1,连结EF,则EF是ED在平面B 1BCC1上的射影.AB 1BC 1,由(1)知AB 1DE,DEBC 1,则BC 1EF,DEF是二面角的平面角.设AC=1, 则DC= .2ABC是正三角形,在RtDCF中,CF=,43sinCDF.41cosCD取BC中点G.EB=EC,EGBC. 在RtBEF中,AC=1,又BF=BC-FC= , GF= ,2GBE, 即EF=
8、 .16342F4.143tanEFDDEF=45. 故二面角为45.概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示.例如,棱锥 S-ABCDE,或棱锥 S-AC.正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥.正棱锥的性质:(1)各
9、侧棱相等,各侧面是全等的等腰三角形;(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。一般棱锥的性质: 如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于等于截得的棱锥的高和已知棱锥的高的平方比;截得棱锥与已知棱锥的侧面积之比也等于它们相应的高的平方比。棱锥的中截面: 过棱锥的高的中点并且平行于底面的截面叫做棱锥的中截面.公式正棱锥的侧面积和全面积: 正棱锥的侧面积等于底
10、面周长 C 与斜高 乘积的一半./h即 ./21hCS正 棱 锥 侧活用实例例4 如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高 CD上;M是侧棱SC上的一点,使截面MAB 与底面所成的角等于NSC.求证:SC垂直于截面MAB.题解1因为SN是底面的垂线,NC是斜线SC在底面上的射影,ABNC,所以ABSC(据三垂线定理). 连结DM.因为ABDC,ABSC,所以AB垂直于DC和SC所决定的平面.又因DM在这平面内,所以ABDM.MDC是截面与底面所成二面角的平面角,MDC=NSC.在MDC和NSC中,因为MDC=NSC,DCS是公共角,所以DMC=SNC=90从而DMSC.从AB
11、SC,DMSC,可知SC截面MAB.题解2连结DS,DM,因为SN是底面的垂线,ABDN,所以ABDS( 据三垂线定理).从而AB平面SDC.因SC,DM都在平面SDC内,故ABSC,ABDM.由ABDM,ABDC,可知MDC是截面与底面所成二面角的平面角,MDC=NSC.以下同证法一,故SC截面MAB.题解3连结DM,DS. 因为M,N分别在SDC的两边上,所以SN和DM都在平面内,且相交于一点P.又因PN是底面的垂线,ABDN,所以ABDM(据三垂线定理).MDC是截面与底面所成二面角的平面角,MDC=NSC.又MDC=NSC,DCS是DCM和SCN的公共角,故DMC=SNC=90.从而D
12、MSC.从ABDM,ABDC,可知AB平面MDC.因为SC是平面MDC内的直线,所以ABSC.从 ABSC,DMSC,可知 SC截面 MAB.例 5 如图,正四棱锥的棱长和底面边长均为 a,求:(1 )侧面与底面所成角 的余弦;(2)相邻两个侧面所成二面角 的余弦。题解(1)作 SO面 ABCD 于 O,作 SEBC 于 E,连接 OE,则 BCOE, SEO= ,.3cos,21,3SaES(2)设 SA 的中点为 F,连接 BF、DF, SAB 和 SAD 都是正三角形,., BDSAB.312cos,2,3 2 BFDaD概念多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的
13、各个多边形叫做多面体的面.两个面的公共边叫做多面体的棱.若干个面的公共顶点叫做多面体的顶点.凸多面体: 把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.正多面体:每个面都是有相同边数的正多边形,且以每个顶点这其一端都有相同数目的棱的凸多面体叫做正多面体.正多面体的种类: 正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形,正六面体的面是正方形,正十二面体的面是正五边形。公式欧拉公式: 简单多面体的顶点数 V、面数 F 的和与棱数 E 之间存在规律 V+F-E=2,它叫做欧拉公式。
14、活用实例例 6 如果一个凸多面体,各顶点引出奇数条棱,求证:顶点数为偶数。题解 1假设多面体的顶点数 V=2n+1(n 1,n N*),第 i 个顶点处有 2mi+1 条棱(m i 1, mi N*),棱数为 E,则 2E=(2m1+1)+ (2m2+1)+ (2mi+1)+.+ (2m2n+1+1)=2(m1+m2+mi+m2n+1)+(2n+1).E=(m1+m2+mi+m2n+1)+n+ .这与棱数是正整数矛盾,此多面体的顶点数为偶数。题解 2设顶点数为 V,各顶点引出的棱数分别为 2n1+1、2n 2+1、2n V+1(ni 1,n i N*),COSDAEFB则棱数 E= (2n1+
15、1)+(2n2+1)+(2nV+1),22E=2(n1+n2+nV)+V, V=2E-2(n1+n2+nV).故 V 一定是偶数.例 7 一个多面本,每个面的边数相同,每个顶点出发的棱数也相同,若各个面的内角总和为 36000,求这个多面体的面数 F、顶点数 V 及棱数 E.题解设多面体的每个面的边数为 x,每一个顶点处出发的棱数为 y,则36000=F 1800, F(x-2)=20, F= .)2( 20xE= . 又1x .)(,2yyEE代入欧拉公式得 .53102.10)(0xxyx又 N*), y N*), 可得 3 . y=3,4,5.x,3(,3y或 4,x N*, y=5 时
16、,x=3,y这个多面体的各面是三角形,各顶点处有 5 条棱,所以,这个多面体有 12 个顶点,20 个面,30 条棱.例 8 一个简单多面体的顶点数为 12,以每个顶点为一端都有 3 条棱,面的形状只有四边形和六边形,求多面体中四边形和六边形数目。题解 设这个多面体中四边形和六边形分别有 x 个、y 个,则面数 F=x+y,V=12 且每个顶点为一端都有 3 条棱, E= =18,)12(V由欧拉公式 V+F-E=2,得 12+(x+y)-18=2, 即 x+y=8 ,又 E= ,即时 2x+3y=18 ,)64(21yx)12(由、解得 x=6,y=2,该简单多面体有 6 个四边形,2 个六
17、边形。概念体积: 几何体占有空间部分的大小叫做它的体积 .定理祖暅原理:夹在两个平行平面间的几何体,被平行于这两个平面的任何平面所截,如果截得的两个截面的面积都相等,那么这两个几何体的体积相等。公式长方体的体积: ,其中 分别为长方体的长、宽、高.abcV长 方 体 ,正方体的体积: ,其中 为正方体的棱长.3正 方 体柱体的体积公式:V 柱体 = , 其中 S 是柱体的底面积,h 是柱体的高.锥体的体积公式:V 锥体 = ,其中 S 是锥体的底面积,h 是锥体的高.31活用实例例 9 三棱锥 ABCD 中 AB CD,且 AB=m,CD=n,EF 是 AB、CD 的公垂线段,FE=h,求三棱
18、锥的体积,V A-BCD。 .题解连 CE、DE, 则 AB 平面 CED,则, FECDBVA-BCD=VA-CED+VB-CED= ABEFCDABSAESCD 213131= .6mnh点评:这里用的就是分割,把一个三棱锥分割成两个,分别求体积。例 10 三棱锥 PABC 中,PA=a,AB=AC=2a, PAB= PAC= BAC=60o,求三棱锥 PABC 的体积. 题解在 PAB 中,PA=a,AB=2a, PAB=60o,由余弦定理可得 PB= , a3AB2=PA2+PB2, 同理可证 AP PC, AP 平面,PBAPBC,也就是可以把 PBC 作为底面,高 AP=a,只需求
19、 PBC 的面积即可。AB=AC=2a, BAC=60o BC=2a,BC 边上高线 PD= ,a3a2,3212PDBCSP.332AVPBBA 点评:(1)三棱锥的四个面都可以做底面,解题时可根据具体问题选择;(2)本题也可以用 ABC 作底,由已知从 A 点出发的三条射线两两所成角都是 60o,点 P 点在平面 ABC上的射影 O 落在 BAC 的平分线 AD 上,PO 是高线,由已知条件求出正三角形 ABC 的面积,再求出 PO 长即可。例 11 已知 ABCD-A1B1C1D1是棱长为 a 的正方体, E、F 分别为棱 AA1与 CC1的中点,求四棱锥 A1-EBFD1的体积。题解
20、,25)(21aFE四棱锥 A1-EBFD1的底面是菱形,连接 EF,则 ,1EFDB平面 ABB1A1,|,111 CVEFDAB A1A DD1FECC1BB三棱锥 F-EBA1的高是 CC1到平面 AB1的距离,即棱长 a,S .42221 aABEEBA3311VF.611EBAEBDA点评:本例运用“等积变换”和“割补”的思想,将求一个四棱锥的体积转化为求两个体积相等的三棱锥的体积,而求三棱锥的体积又利用了三棱锥的特点(体积的自等性) ,从而简化计算。概念球:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面. 球面所围成的几何体叫做球体,简称球.半圆的圆心叫做球心. 连结球心和球面上任
21、一点的线段叫做球的半径. 连结球心和球面上两点并且经过球心的线段叫做球的直径. 球面也可以看作与定点的距离等于定长的点的集合(轨迹).球的表示: 一个球通常用它的球心的字母来表示 , 例如球 O.球的截面的性质:(1)球的截面是圆面;(2)球心和截面圆心的连线垂直于截面;(3)球心到截面的距离 d 与球半径 R 及截面圆半径 r 的关系是 r= .2dR球的大圆和小圆: 球面被经过球心的平面截得的圆叫做球的大圆, 被不经过球心的截面截得的圆叫做球的小圆.两点间的球面距离: 在球面上,两点之间的最短路线, 就是经过这两点的大圆在这两点间的一段劣弧的长度, 这个弧长叫做两点间的球面的距离.(求两点
22、间的球面的距离的关键,在于求出过这两点的球半径的夹角).经度: 某地的经度是一个二面角的度数,即经过该地的经线所在半圆面与 00 经线所在半圆面所成的二面角的度数。纬度: 某地的纬度是一个线面角的度数,即该地与球心的连线与赤道平面所成角的度数。公式球的表面积公式: 设球的半径为 R,则球的表面积为 S 球面 =4 R2,即球的面积等于大圆面积的 4 倍。球的体积公式: V 球 = R3.其中 R 为球的半径. 4活用实例例 12 在球 O 内有相距 1cm 的两个平行截面,截面面积分别为 5 cm2 和 8 cm2,球心不在截面之间, 求球 O 的表面积。题解作球 O 的轴截面如图所示,圆 O
23、 是球的大圆,A1B1、A 2B2 分别是两个平行截面圆的直径,过 O 作 OC1 A1B1 于 C1,交 A2B2 于 C2, A1B1|A2B2, OC1 A2B2,C1、C 2 分别为 A1B1、A 2B2 的中点,设两平行截面的半径分别为 r1、r 2,且 r2r1, 则有 r12=5 , r22=8 , r12=5, r22=8, OA1、OA 2 都等于球的半径 R,OC1= ,OC 2= ,521R822Rr 婂1婂1婂 A婂婂 2,解得 R =9,18522R2S 球 =4 9=36 (cm 2).例 13 A、B 、C 是球面上三点,已知弦 AB=18cm,BC=24cm,A
24、C=30cm,平面 ABC 与球心 O 的距离恰好为球半径的一半,求球的面积。题解 AB2+BC2=AC2, ABC 为直角三角形, ABC 的外接圆 O1 的半径 r=15cm,因圆 O1 即为平面 ABC 截球 O 所得的圆面,因此有 R2=( ) 2+152,R2=300, S 球 =4 R2=1200 (cm 2).点评:求球的表面积实际上即求球的半径,要注意利用球的截面的性质.例 14 设地球的半径为 R,在北纬 600 圈上甲、乙两地,它们在纬度圈上的弧长是 , 求这两地的球面距离。2题解如图北纬 600 圈小圆的半径,O 1A=O1B=OAcos600= R, 21北纬 600
25、圈上弧长是 的弧对的圆心角 AO1B= ,2RR即 AB 为北纬 600 圈小圆的直径,由 AO=BO=R, ,3AOCBOAB 为正三角形, AOB 为球心角,弧 AEB= 即为所求.3例 15 如图,球面上有三个点,其中任意两点的球面距离都等于大圆周长的 ,经过这三个点的小圆 61周长为 4 ,求这个球的半径。题解 由已知 AOB= BOC= COA=600 ,则 OAB、 OAC、 OBC 是等边三角形, ABC 是正三角形,设球半径为 R, ,则 AB=BC=CA=R, ABC 外接圆半径 r= R , 3由已知小圆即 ABC 外接圆周长为 4 ,即 r=2, R=2, R=2 .例 16 正三棱锥 P-ABC 的侧棱长为 ,两侧棱的夹角为 2 ,求其外接球的体积.题解如图,作 PD 底面 ABC 于 D,则 D 为正三角形 ABC 的中心,底面 ABC, P、O、D 三点共线, OD,2,ABCPBA,,sinco2sin32AB设 ,作 OE PA 于 E,在 Rt 中,APDPDOCABO1OA BO1OPDCAB,又 OP=OA=R, ,PADsinsin32 21PAE, V 球 = 3=2sin341cosEOR342sin1.)sin4(23