收藏 分享(赏)

八年级数学第一章全部教案.doc

上传人:j35w19 文档编号:9269064 上传时间:2019-07-31 格式:DOC 页数:12 大小:576KB
下载 相关 举报
八年级数学第一章全部教案.doc_第1页
第1页 / 共12页
八年级数学第一章全部教案.doc_第2页
第2页 / 共12页
八年级数学第一章全部教案.doc_第3页
第3页 / 共12页
八年级数学第一章全部教案.doc_第4页
第4页 / 共12页
八年级数学第一章全部教案.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、 中考网 中考网 华师大数学八年级第十一章全部教案教学内容: 11.1 平移教学目标:知识与技能目标:1通过具体实例认识图形的平移变换,探索它的基本性质. 2能按要求作出简单的平面图形平移后的图形.3、要明确平面图形的平移变换,不少平面图案都可以看作是由其中的某一部分,沿着上下或左右的方向,平移若干次而成的过程与方法目标: 通过具体实例认识图形的平移变换,通过现实生活中各种丰富的实例,让学生体会图形的平移现象,让学生通过各种图形的平移,体验感受图形平移的主要因素是移动的方向和移动的距离. 探索它的基本性质。情感与态度目标:认识和欣赏这些图形的平移变换在现实生活中的应用,体会到数学与实际生活的密

2、切联系,认识到数学的价值。教学重、难点与关键:重点:平移的基本内涵与基本性质难点:发现原图形与平移后图形间的关系。关键:平移特征的探索及理解。教辅工具:教学时间安排:3 教时第 1 教时 图形的平移 1教学程序设计:程序 教师活动 学生活动 备注创设问题情景1、投影:引言及插图。2、回忆游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯3、观察图片中传送带上的电视机与手扶电梯上的人,回答以下问题:(1)传送带上每台电视机做什么运动?手扶电梯上的人呢?(2)传送带上的电视机的形状、大小在运动前后是否发学生看投影并思考问题 引出内容:图形的平移与旋转,并进行初步分类,引出本节课研究内容:生活中

3、的平移。中考网 中考网 生了改变?手扶电梯上的人呢?(3)在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其他部位向什么方向移动?移动了多少距离?(4)如果把移动前后的同一台电视机的屏幕分别记为四边形 ABCD 和四边形 EFGH(课件演示) ,那么四边形ABCD 与四边形 EFGH 的形状、大小是否相同?4、图案欣赏(课件演示)探究新知11平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。2它由什么要素决定?3对应点、对应线段、对应角1举一些生活中平移的实例。2学生回答问题3、指出图中的对应点、对应线段、对应角4试一

4、试反馈训练应用提高教材:P3 页练习 1、2、3 1 题分组举出实例2 题学生讨论后回答3 题动手画探究新知2(二) 、探索平移的基本性质:1、想一想:(课件演示)(1 )在上图中,线段 AE,BF,CG ,DH 有怎样的位置关系?(2 )图中每对对应线段之间有怎样的位置关系?(3 )图中有哪些相等的线段、相等的角?2、归纳平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。3、做一做:(课件演示)如图所示,ABE 沿射线 XY 的方向平移一定距离后成为CDF.找出图中存在的平行且相等的三条线段和一组全等三角形.1、 学生分组讨论2、 分组回答3、 学生讨论后

5、回答4、 边看边思考回答。5、讨论后回答反馈训练应用1、练习:P7 页 1、2 、32 思考:图中的四个小三角形都是等边三角形,边长为 2cm,能通过平移 ABC 得到其它1、 按照要求完成。2、 讨论完成。GFHEDCBAYXEBA FDC中考网 中考网 提高 三角形吗?若能,请画出平移的方向,并说出平移的距离.小结提高1、 回顾本节课的活动过程:观察分析探索概括。2、本节课学到了哪些知识和方法?学生讨论回答布置作业教材第 7 页习题 1、2。反思第 2 教时 图形的平移 2教学程序设计:程序 教师活动 学生活动 备注创设问题情景上节课你学到了什么?举例 举一些生活中平移的实例。探究新知1投

6、影:例 1如图 11.1.8(1) ,ABC 经过平移到ABC的位置,指出平移的方向,并量出平移的距离。投影:试一试在如图 11.1.9 的方格纸中,画出将图中的 ABC 向右平移 5 格后的ABC ,然后再画出将例 1:先看懂题意,看教师演示,从中体会平移的方向和距离。在课本上画出来,并回答题目问题。EACFB D中考网 中考网 ABC向上平移 2 格后的ABC。ABC是否可以看成是ABC 经过一次平移而得到的呢?如果是,那么平移的方向和距离分别是什么呢?投影:做一做如图 11.1.10,在纸上画ABC 和两条平行的对称轴m、n。画出ABC 关于直线 m 对称的ABC,再画出ABC关于直线

7、n 对称的ABC。观察ABC 和ABC,你能发现这两个三角形有什么关系吗?学生充分地动手,可在小组讨论得出:两次轴对称得到的图形实际进行了一次平移。反馈训练应用提高1 平移方格纸中的图形(如图) ,使点 A 平移到点 A处,画出平移后的图形。 2图案欣赏(提高认识)按照要求完成后,相互检查讨论完成。小结提高1、回顾本节课的活动过程:观察分析探索概括。2、本节课学到了哪些知识和方法?学生讨论回答布置作业教材第 8 页习题 3、4。反思中考网 中考网 第 3 教时 图形的平移练习教学程序设计:程序 教师活动 学生活动 备注创设问题情景前面你学到了什么?举例 举一些生活中平移的实例。探究新知1例:图

8、中的四个小三角形都是等边三角形,边长为 2cm,能通过平移 ABC 得到其它三角形吗?若能,请画出平移的方向,并说出平移的距离.随堂练习:(投影)1、 填空:(1 )将线段 AB 向右平移 3cm 得到线段 CD,如果 AB=5 cm,则CD= cm.(2 )将ABC 向上平移 10cm 得到EFG,如果ABC=52,则EFG= ,BF= cm.(3 )将面积为 30cm2 的等腰直角三角形 ABC 向下平移 20cm,得到MNP,则MNP 是 三角形,它的面积是 cm2.2、 图中小船经过平移到了新的位置,你发现少了什么?请补上.3、 如图 1,在四边形 ABCD 中,ADBC,AB=CD,

9、ADBC,要探究B 与C 的关系,可以采用平移的方法(如图 2、3)。请你分别说明图形的形成过程,同时判断B 与C 的关系并叙述理由,你还有其他方法吗?请在图 1 中画出你的方案。先看懂题意,分组讨论,得出结论,然后全班交流。学生独立完成后交流。教师注意讲评教师注意讲评小结 1、回顾本节课的活动过程: 学生讨论回答(3)(2)(1) FEEA DC CDACDAB B BGEACFB D中考网 中考网 提高 2、本节课学到了哪些知识和方法?布置作业教材第 25 页习题 2、3。反思教学内容: 11.2 旋转教学目标:知识与技能目标:31认识图形的旋转变换,掌握它的基本性质 . 2认识旋转对称图

10、形,并能够按要求作出简单的平面图形旋转后的图形.3.培养学生创造图案的设计能力过程与方法目标:1.、通过具体实例认识图形的旋转变换,探索它的基本性质. 引导学生,探索发现原图形经过旋转后的对应点、对应线段之间的位置关系与数量关系.体验感受图形旋转的主要因素是旋转中心和旋转的角度,从而体会到图形在旋转过程中,图形中的每一点都绕着旋转中转动了相同的角度 2认识旋转对称图形,理解旋转对称图形的概念,重视对学生自行设计旋转对称图形的能力的培养,并能够按要求作出简单的平面图形旋转后的图形.情感与态度目标:认识和欣赏这些图形的旋转变换在现实生活中的应用,体会到数学与实际生活的密切联系,经历对生活中与旋转现

11、象有关的图形进行观察、分析、欣赏、交流等活动,发展初步的审美能力,增强对图形欣赏的意识。教学重、难点与关键:重点:旋转变换的基本性质,并能根据性质作出简单的平面图形旋转后的图形。难点:旋转变换的基本性质的探索,作出简单的平面图形旋转后的图形。关键:认识理解旋转变换的基本性质,理解旋转对称图形,培养学生动手操作能力。教辅工具: 中考网 中考网 教时安排:4 教时(即第 47 教时)第 4 教时教学程序设计:程序 教师活动 学生活动 备注创设问题情景1 课件演示,旋转而动产生的奇妙画面。2 你能自己举出日常生活中的一些事例吗?学生对每一种画面谈谈自己的看法。让学生扩展思维,列举生活中还有哪些旋转图

12、形。探究新知11观察图形找出这些图形的共同特征:2.概念:旋转、旋转中心1 观察、分析、讨论出共同特征。它们绕上面的悬挂点转动2理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。探究新知21 做一做用一张半透明的薄纸,覆盖在画有任意AOB 的纸上,在薄纸上画出与AOB 重合的一个三角形。然后用一枚图钉在点 O 处固定,将薄纸绕着图钉(即点 O)转动一个角度 45 ,薄纸上的三角形就旋转到了新的位置,标上 A、O、B,我们可以认为AOB 旋转 45 后到了上 AOB 。在这样的旋转过程中,你发现了什么?做一做后,讨论回答:图中,可以看到点 A 旋转到点A,OA 旋转

13、到 OA, AOB 旋转到AOB,这些都是互相对应的点、线段与角。那么点 B 的对应点是_;线段 OB 的对应线段是线段 _;线段 AB 的对应线段是线段_ ;A 的对应角是 _;B 的对应角是_;旋转中心是点_;旋转的角度是_。中考网 中考网 探究新知3做一做如图 11.2.5,如果旋转中心在 ABC 的外面点 O 处,转动60 ,将整个ABC 旋转到ABC的位置。那么这两个三角形的顶点、边与角是如何对应的呢?1学生尝试2交流探究新知41、 如图 11.2.6,ABC 是等边三角形,D 是 BC 上一点,ABD 经过旋转后到达ACE 的位置。旋转中心是哪一点?旋转了多少度?如果 M 是 AB

14、 的中点,那么经过上述旋转后,点 M 转到了什么位置?2、如图 11.2.7(1) ,点 M 是线段 AB 上一点,将线段 AB绕着点 M 顺时针方向旋转 90 ,旋转后的线段与原线段的位置有何关系?如果逆时针方向旋转 90 呢?反馈训练应用提高空间想象力的训练注意讲评小结提高说说“旋转”的概念,旋转的等量关系。说说描述“旋转”的过程要注意哪几方面?讨论、体会。布置作业课本 P11 页 2、3反思第 5 教时中考网 中考网 教学程序设计:程序 教师活动 学生活动 备注创设问题情景回顾旋转的概念 理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。探究新知1探索观察上

15、面两个图形,你能发现有哪些线段相等?有哪些角相等?你认为图形旋转的特征是什么?教师组织学生分组讨论。1 分组讨论2 交流。3 完成下面填空:图 11.2.4 中,线段 OA、OB 都是绕点O 旋转 45 角到对应线段 OA与OB,而且OA_,OB _,AB _;AOB _,A_,B_。在图 11.2.5 中,旋转中心是点 O,点A、B、C 都是绕点 O 旋转 60 角到对应点 A 、B、C,而且OA_,OB _,OC_;AB_,BC_,CA _;CAB _,ABC _,BCA _。讨论后统一意见:图形中每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相

16、等,图形的形状与大小都没有发生变化中考网 中考网 反馈训练应用提高练习1确定图形中的旋转中心,指出这一图形是由哪个基本图形旋转多少度、旋转几次而生成的(不计颜色) 。2画出ABC 绕点 C 逆时针旋转 90 后的图形。反馈训练应用提高空间想象力的训练注意讲评小结提高说说“旋转”的概念,旋转的等量关系。说说描述“旋转”的过程要注意哪几方面?讨论、体会。布置作业画出所给图形绕点 O 顺时针旋转 90 后的图形。旋转几次后可以与原图形重合?反思第 6 教时教学程序设计:程序 教师活动 学生活动 备注创设问题情景1.回顾旋转的概念2.如图,画出 ABC 绕 O 点顺时针旋转 60的图形 ABC. 1.

17、理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。2.学生独立完成。中考网 中考网 探究新知1实验 1、画出正方形绕对角线的交点顺时针旋转 90的图形.观察旋转后的图形与原正方形有何关系?实验 2如图 11.2.8 所示,电扇的叶片转动 120 、螺旋桨转动 180 后,都能与自身重合。你能再举出一些这样的实例吗?实验 3、用一张半透明的薄纸,覆盖在如 11.2.9 所示的图形上,在薄纸上画这个图形,使它与如图 11.2.9所示的图形重合。然后用一枚图钉在圆心处穿过,将薄纸绕着图钉旋转,观察旋转多少度(小于周角)后,薄纸上的图形能与原图形再一次重合。问题:前面 3

18、 个实验有什么共同的特性?概念:旋转对称图形:绕着某一点旋转一定角度 (小于周角)后能与自身重合的图形.1一个正方形,和大头针,进行实验,并回答问题。作图后发现,正方形旋转 90后与原图形重合。2、在日常生活中,我们经常可以看到,一些图形绕着某一定点转动一定的角度后能与自身重合。3、小组讨论,全班交流。4、独立操作完成,小组交流谈心得。5、讨论得出:绕着某一点旋转一定角度后能与自身重合的图形.中考网 中考网 操作训练操作 1:用类似上述的操作方法对如图 11.2.10 所示的图形进行探索,看看它是不是旋转对称图形?想一想旋转中心在何处?该图形需要旋转多少度后,能与自身重合?该图形是轴对称图形吗

19、?操作 2:图 11.2.11 所示的图形是轴对称图形,用类似上述的操作方法对图 11.2.11 所示的图形进行探索,它能通过旋转与自身重合吗?用半透明的薄纸覆盖在如 11.2.10 所示的图形上,在薄纸上画这个图形,使它与如图 11.2.10 所示的图形重合。独立操作完成。用半透明的薄纸覆盖在如 11.2.10 所示的图形上,在薄纸上画这个图形,使它与如图 11.2.10 所示的图形重合。独立操作完成。反馈训练应用提高1 找找看,下面图形中有几匹马?它们的位置关系如何?2 如图所示的图形绕哪一点旋转多少度后能与自身重合?3如图,画出 ABC 绕 O 点逆时针旋转 60的图形 ABC. 反馈训练应用提高空间想象力的训练注意讲评小结提高说说“旋转对称”的概念。说说描述“旋转对称”的过程要注意哪几方面?讨论、体会。布置作业P15 页 1、2、3、4想一想:正方形旋转 180后能与自身重合吗?还能旋转几度与自身重合?正五边形、正六边形、正七边形最小旋转多少度能与自身重合?反思

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报