收藏 分享(赏)

直线、平面平行的判定及其性质_教案.doc

上传人:精品资料 文档编号:9250132 上传时间:2019-07-31 格式:DOC 页数:5 大小:100KB
下载 相关 举报
直线、平面平行的判定及其性质_教案.doc_第1页
第1页 / 共5页
直线、平面平行的判定及其性质_教案.doc_第2页
第2页 / 共5页
直线、平面平行的判定及其性质_教案.doc_第3页
第3页 / 共5页
直线、平面平行的判定及其性质_教案.doc_第4页
第4页 / 共5页
直线、平面平行的判定及其性质_教案.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1直线与平面平行的判定和性质 一、 教学目标(一)本节知识点1、知识与技能 (1)理解并掌握直线与平面平行的判定定理; (2)进一步培养学生观察、发现的能力和空间想象能力; 2、过程与方法 学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。 3、情感、态度与价值观 (1)让学生在发现中学习,增强学习的积极性; (2)让学生了解空间与平面互相转换的数学思想。直线与平面的位置关系,直线与平面平行的判定定理,直线与平面平行的性质定理。(二)课时安排在学习了前面关于平面、空间直线等立体几何中的基础概念之后接触到的立体几何中的又一研究重点直线与平面的位置关系,所以本节内容处于一个承上启下的位

2、置。安排用二个课时来完成。(三)本堂课教学目标1教学知识目标进一步熟悉掌握空间直线和平面的位置关系。理解并掌握直线与平面平行的判定定理及直线与平面平行的性质定理。2能力训练:掌握由“线线平行”证得“线面平行”和“线面平行”证得“线线平行”的数学证明思想。进一步培养学生的观察能力、空间想象力和类比、转化能力,提高学生的逻辑推理能力。3德育渗透:培养学生的认真、仔细、严谨的学习态度。建立“实践理论再实践”的科学研究方法。(四)教学重点、难点重点:直线与平面平行的判定和性质定理及应用。难点:灵活的运用数学证明思想。(五)教学方法:启发式、引导式、找错教学。多注重观察和分析,理论联系实际。(六)教具:

3、模型、多媒体设备二、教学过程(一)内容回顾师:在上节课我们介绍了直线与平面的位置关系,有几种? 可将图形给以什么作为划分的标准? 出引导作答 生:三种,以直线与平面的公共点个数为划分标准,分别是 直线与平面有两个公共点直线在平面内(直线上所有的点都在这个平面内)直线与平面只有一个公共点直线与平面相交直线与平面没有公共点直线与平面平行直线在平面内 直线与平面相交 直线与平面平行2注:我们也将直线与平面相交和平行统称为直线在平面外(二)新授内容1如何判定直线与平面平行师:请同学回忆,我们昨天是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行?生:借助定义,用反证法说明直线与

4、平面没有公共点(证明直线在平面外不能说明直线与平面平行)直线与平面平行的判定定理 如果平面外一条直线与这个平面内的一条直线平行,那么这条直线和这个平面平行。已知:a ,b ,且 ab 从学生的直观感求证:a 觉入手如:怎样师:你们会采用什么方法证明定理?生:反证法 放置跳高竿,使证明: ab经过 a,b 确定一个平面 竿子和地面平行a ,b 与 是两个不同的平面。 以此启发学生如b ,且 b =b 何保证直线与平 假设 a 与 有公共点 P,则 Pb, 面平行点 P 是 a、b 的公共点这与 ab 矛盾,a 例 1:求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面。已知:如图空间四

5、边形 ABCD 中,E、F 分别是 AB、AD 的中点。求证:EF平面 BCD证明:连结 BDAEEBEFBDAFFD EF 平面 BCD EF平面 BCD ba P B ADCE F3BD 平面 BCD评析:要证 EF平面 BCD,关键是在平面 BCD 中找到和 EF 平行的直线,将证明线面平行的问题转化为证明直线的平行2直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。已知:a,a ,b(如右图)求证:ab证明:b b a a a ab= abb 评析:证明用到了“同一平面的两直线没有公共点,则它们平行”例 2、如图,平面 、

6、两两相交,a、b、c 为三条交线,且 ab,那么 a 与 c、b 与 c 有什么关系?为什么?师:猜 a 与 c 什么关系?生:平行师:已知 ab 能得出什么结论,怎样又可征得 ac?解:依题可知:=a,=b,=C 借助多媒体将a ,b ,且 abb 图形多角度展又b , =Cbc 示,便于观察又ab, ac师:b,过 b 且与 相交的平面有多少个?这些交线的位置关系如何? 多媒体展示过生:有无数条交线,且它们相互平行。 程注: 性质定理也可概括为由“线面平行”证得“线线平行”过 b 且与 相交的平面有无数个,这些平面与 的交线也有无数条,且这些交线都互相平行3练习能保证直线 a 与平面 平行

7、的条件是( A )A.a ,b ,ab B .b ,abC. b ,c,ab,acD. b ,Aa,Ba,Cb ,Db 且 ACBD下列命题正确的是( D F )ba 注:性质定理也可概括为由“线面平行”证得“线线平行”过b且与相交的平面有无数个,这些平面与的交线也有无数条,且这些交线都互相a bc4A. 平行于同一平面的两条直线平行B. 若直线 a,则平面 内有且仅有一条直线与 a 平行C. 若直线 a,则平面 内任一条直线都与 a 平行D. 若直线 a,则平面 内有无数条直线与 a 平行E. 如果 a、b 是两条直线,且 ab,那么 a 平行于经过 b 的任何平面F. 如果直线 a、b 和

8、平面 满足 ab,a,b ,那么 b若两直线 a 与 b 相交,且 a 平行于平面 ,则 b 与 的位置关系是 平行或相交如图,空间四边形 ABCD 被一平面所截,截面 EFGH 是一矩形。(1)求证:CD平面 EFGH;(2)求异面直线 AB、CD 所成的角证明:依题:矩形 EFGH GHEFEF 面 ACD GH面 ACDGH 面 ACD GH 面 BCD 面 BCD面 ACDCDGHCDGH 面 EFGHCDGH,且面 BCD面 EFGHGH CD 面 EFGHCD平面 EFGH 如可证 CDGH同理可证 ABGF HGF 即为异面直线 AB 与 CD 所成的角且矩形 EFGH HGF9

9、0HGF904思考补充过两条平行线中的一条和另一条平行的平面有 无数 个过两条异面直线中的一条和另一条平行的平面有 一 个,并说明理由。已知:a 与 b 为异面直线求证:过 b 有且只有一个平面与 a 平行证明:假设过 b 有两个平面 、 都与 a 平行在 b 上任取一点 P,a 与 b 为异面直线,Pa.过 a 和 P 有且只有一个平面设为 ,且 与 、 都相交,设分别交于 C 和 C又a,aaC,aCa ,C ,C 且 CC=PAB DCHEFG5这与在平面内,过一点有且只有一条直线与已知直线平行矛盾,所以过两条异面直线中的一条和另一条平行的平面只有一个5小结本节的重点是直线与平面平行的判

10、定和性质定理。记清楚定理的描述,在应用定理时,要注意条件的满足,如判定定理中的三个条件一个不能少。另外这两个定理在证题时往往需要交替使用,但要注意这种交替不是循环,而是步步向前推进的。6板书7作业课本 P19 习题 9.3 的第 1、3、4 题三课后反思立体几何比较抽像,所以要尽可能找生活中的实例进行分析。多媒体可以代替我们抄题,展示一些比较难想像的过程,节约我们的时间,但是不要什么都依赖它,注意培养学生的动手能力。多让学生自己分析找出规律,增加互动。适时的对过去所以学过的知识进行复习。9.3 直线与平面平行的判定与性质定理(二)1. 如何判定直线与平面平行 例 1(练习) 例 22. 直线与平面平行的性质定理

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报