1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)泽普县高中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若 满足约束条件 ,则当 取最大值时, 的值为( )yx,03yx31xyyxA
3、 B C D 32 “ ”是“圆 关于直线 成轴对称图形”的( )3ba 05622ayxbxy2A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度3 已知 i 是虚数单位,则复数 等于( )A + i B + i C i D i4 偶函数 f(x)的定义域为 R,若 f(x+2 )为奇函数,且 f(1)=1 ,则 f(89)+f(90)为( )A2 B 1 C0 D15 将函数 的图象向左平移 个单位,再向上平移 3 个单位,得到函数 的图象,)63sin(2
4、)(xf 4 )(xg则 的解析式为( ))(xgA B)4i()3sin(2)(xgC D312sn)(1【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.6 线段 AB 在平面 内,则直线 AB 与平面 的位置关系是( )AAB BABC由线段 AB 的长短而定 D以上都不对由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A
5、的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动
6、”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)7 数列a n满足 an+2=2an+1an,且 a2014,a 2016是函数 f(x)= +6x1 的极值点,则log2(a 2000+a2012+a2018+a2030)的值是( )A2 B3 C4 D58 如图,在正四棱锥 SABCD 中,E,M,N 分别是 BC,CD,SC 的中点,动点 P 在线段 MN 上运动时,下列四个结论:EPBD;EP AC; EP面 SAC;EP面 SBD 中恒成立的为( )A B C D9 如图是一容量为 1
7、00 的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11 B11.5 C12 D12.510三个数 a=0.52,b=log 20.5,c=2 0.5之间的大小关系是( )Abac Ba cb Ca bc Dbca11设 为双曲线 的右焦点,若 的垂直平分线与渐近线在第一象限内的交点到F21(0,)xyOF另一条渐近线的距离为 ,则双曲线的离心率为( )|OFA B C D3232【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想12已知| |=| |=1, 与 夹角是 90, =2 +3 , =k 4 , 与 垂直,k 的值为( )A
8、6 B6 C3 D3由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”)
9、 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)二、填空题13若关于 x,y 的不等式组 (k 是常数)所表示的平面区域的边界是一个直角三角形,则 k= 14已知直线: ( )被圆 : 所截的弦长是圆心 到直
10、线043mC0622yxC的距离的 2 倍,则 .15将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为 a,第二次朝上一面的点数为 b,则函数 y=ax22bx+1 在(,2 上为减函数的概率是 16如图:直三棱柱 ABCAB C的体积为 V,点 P、Q 分别在侧棱 AA和 CC上,AP=C Q,则四棱锥BAPQC 的体积为 17椭圆 的两焦点为 F1,F 2,一直线过 F1交椭圆于 P、Q,则PQF 2的周长为 18已知点 A(1,1),B (1,2),C (2,1),D(3,4),求向量 在 方向上的投影三、解答题19已知函数 f(x0= (1)画出 y=f(x)的图象,并指出函
11、数的单调递增区间和递减区间; (2)解不等式 f(x1) 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将
12、_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)20如图所示,在正方体 ABCDA1B1C1D1中,E 是棱 DD1的中点()求直线 BE 与平面 ABB1A1所成的角的
13、正弦值;()在棱 C1D1上是否存在一点 F,使 B1F平面 A1BE?证明你的结论21已知集合 A=x|x1,或 x2,B=x|2p1x p+3(1)若 p= ,求 AB;(2)若 AB=B,求实数 p 的取值范围22(本题满分 15 分)如图 是圆 的直径, 是弧 上一点, 垂直圆 所在平面, , 分别为 , 的中点.ABOCABVCODEVAC(1)求证: 平面 ;DEV(2)若 ,圆 的半径为 ,求 与平面 所成角的正弦值.65EB由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所
14、成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情
15、况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力23某人在如图所示的直角边长为 4 米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获 Y(单位:kg)与它的“ 相近”作物株数 X 之间的关系如下表所示:X 1
16、2 3 4Y 51 48 45 42这里,两株作物“相近” 是指它们之间的直线距离不超过 1 米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“ 相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确
17、定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点
18、,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)24(本小题满分 12 分)已知圆 与圆 : 关于直线 对称,且点 在圆 上.MN22)35()(ryxxy)35,1(DM(1)判断圆 与圆 的位置关系; (2)设 为圆 上任意一点, , , 三点不共线, 为 的平分线,且P),1(A),(BBAP、 PGAB交 于 . 求证: 与 的面积之比为定值.ABGBPG由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B
19、 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,
20、小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)泽普县高中 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】考点:简单线性规划2 【答案】 A【解析】3 【答案】A【解析】解:复数 = = = ,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A
21、和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能
22、够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故选:A【点评】本题考查了复数的运算法则,属于基础题4 【答案】D【解析】解:f(x+2 )为奇函数,f( x+2)= f(x+2 ),f(x)是偶函数,f( x+2)= f(x+2 )=f (x 2),即f(x+4 )=f( x),则 f(x+4)=f(x),f (x+8)= f(x+4)=f(x),即函数 f(x)是周期为 8 的周期函数,则 f(89)=f(88+1 )=
23、f(1)=1,f(90)=f(88+2 )=f(2),由f(x+4 )=f( x),得当 x=2 时,f(2)=f(2)=f(2),则 f(2)=0 ,故 f(89)+f(90)=0+1=1,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键5 【答案】B【解析】根据三角函数图象的平移变换理论可得,将 的图象向左平移 个单位得到函数 的图)(xf4)4(xf象,再将 的图象向上平移 3 个单位得到函数 的图象,因此 )4(xf 34)(g3.)4sin(2631sin2x6 【答案】A【解析】解:线段 AB 在平面 内,直线 AB 上所有的点都在平
24、面 内,直线 AB 与平面 的位置关系:直线在平面 内,用符号表示为: AB故选 A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远
25、离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公
26、理一:如果一条线上的两个点在平面上则该线在平面上7 【答案】C【解析】解:函数 f(x)= +6x1,可得 f(x )=x 28x+6,a 2014,a 2016是函数 f(x)= +6x1 的极值点,a 2014,a 2016是方程 x28x+6=0 的两实数根,则 a2014+a2016=8数列a n中,满足 an+2=2an+1an,可知a n为等差数列,a 2014+a2016=a2000+a2030,即 a2000+a2012+a2018+a2030=16,从而 log2(a 2000+a2012+a2018+a2030)=log 216=4故选:C【点评】熟练掌握利用导数研究函数的
27、极值、等差数列的性质及其对数的运算法则是解题的关键8 【答案】 A【解析】解:如图所示,连接 AC、BD 相交于点 O,连接 EM,EN在中:由异面直线的定义可知:EP 与 BD 是异面直线,不可能 EPBD,因此不正确;在中:由正四棱锥 SABCD,可得 SO底面 ABCD,ACBD,SOAC SO BD=O, AC 平面 SBD,E,M,N 分别是 BC,CD,SC 的中点,EMBD,MNSD ,而 EMMN=M,平面 EMN平面 SBD,AC平面 EMN,AC EP故正确在中:由同理可得:EM平面 SAC,若 EP平面 SAC,则 EPEM,与 EPEM=E 相矛盾,因此当 P 与 M
28、不重合时,EP 与平面 SAC 不垂直即不正确在中:由可知平面 EMN平面 SBD,EP平面 SBD,因此正确故选:A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A
29、的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注
30、意空间思维能力的培养9 【答案】C【解析】解:由题意,0.065+x 0.1=0.5,所以 x 为 2,所以由图可估计样本重量的中位数是 12故选:C10【答案】A【解析】解:a=0.5 2=0.25,b=log20.5log 21=0,c=20.52 0=1,b ac故选:A【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用11【答案】B【解析】由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛
31、A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学
32、也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)12【答案】B【解析】解: =(2 +3 )(k 4 )=2k +(3k 8) 12 =0,又 =02k 12=0,k=6故选 B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的二、填空题13【答案】 1 或 0 【解析】解:满足约束条件 的可行
33、域如下图阴影部分所示:kxy+10 表示地(0,1)点的直线 kxy+1=0 下方的所有点(包括直线上的点)由关于 x,y 的不等式组 (k 是常数)所表示的平面区域的边界是一个直角三角形,可得直线 kxy+1=0 与 y 轴垂直,此时 k=0 或直线 kxy+1=0 与 y=x 垂直,此时 k=1综上 k=1 或 0故答案为:1 或 0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线 kxy+1=0 与 y 轴垂直或与 y=x 垂直,是解答的关键由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效
34、果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与
35、蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)14【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即
36、直径最长,当定点是弦的中点时,弦最短,并且弦长公式是 ,R 是圆的半径,d 是圆心到直线的距离.2l15【答案】 【解析】解:由题意,函数 y=ax22bx+1 在(,2 上为减函数满足条件 第一次朝上一面的点数为 a,第二次朝上一面的点数为 b,a 取 1 时,b 可取 2,3,4,5,6;a 取 2 时,b 可取 4,5,6;a 取 3 时,b 可取 6,共 9 种(a,b)的取值共 36 种情况所求概率为 = 故答案为: 16【答案】 V【解析】【分析】四棱锥 BAPQC 的体积,底面面积是侧面 ACCA的一半,B 到侧面的距离是常数,求解即可【解答】解:由于四棱锥 B APQC 的底面
37、面积是侧面 ACCA的一半,不妨把 P 移到 A,Q 移到 C,所求四棱锥 BAPQC 的体积,转化为三棱锥 AABC 体积,就是:故答案为:17【答案】 20 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选
38、填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:a=5
39、,由椭圆第一定义可知PQF 2的周长=4aPQF 2的周长=20 ,故答案为 20【点评】作出草图,结合图形求解事半功倍18【答案】 【解析】解:点 A(1,1),B(1,2),C (2,1),D(3,4),向量 =(1+1 ,21)=(2,1),=(3+2,4+1 )= (5,5);向量 在 方向上的投影是= = 三、解答题19【答案】 【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(,0),(1,+ ),丹迪减区间是(0,1)(2)由已知可得或 ,解得 x1 或 x ,故不等式的解集为(, 1 , 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_
40、(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在
41、玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题20【答案】 【解析】解:(I)如图(a),取 AA1的中点 M,连接 EM,BM,因为 E 是 DD1的中点,四边形 ADD1A1为正方形,所以 EMAD又在正方体 ABCDA1B1C
42、1D1中AD平面 ABB1A1,所以 EM面 ABB1A1,从而 BM 为直线 BE 在平面ABB1A1上的射影,EBM 直线 BE 与平面 ABB1A1所成的角设正方体的棱长为 2,则 EM=AD=2,BE= ,于是在 RtBEM 中,即直线 BE 与平面 ABB1A1所成的角的正弦值为 ()在棱 C1D1上存在点 F,使 B1F 平面 A1BE,事实上,如图(b)所示,分别取 C1D1和 CD 的中点 F,G,连接 EG,BG,CD 1,FG,因 A1D1B 1C1BC,且 A1D1=BC,所以四边形 A1BCD1为平行四边形,因此 D1CA 1B,又 E,G 分别为 D1D,CD 的中点,所以 EGD 1C,从而 EGA 1B,这说明 A1,B,G,E共面,所以 BG平面 A1BE因四边形 C1CDD1与 B1BCC1皆为正方形,F,G 分别为 C1D1和 CD 的中点,所以 FGC 1CB 1B,且FG=C1C=B1B,因此四边形 B1BGF 为平行四边形,所以 B1FBG,而 B1F平面 A1BE,BG平面 A1BE,故B1F平面 A1BE由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(