1、目录 泊松比 1 杨氏模量 1 弹性模量 2 剪切模量 3 基本概念 . 3 纤维复合材料层间剪切模量测试 3 筑坝堆石料的剪切模量 . 4 弹性模量和切变模量 . 7 弹簧钢的切变模量取值 . 8 泊松比 法国数学家 Simeom Denis Poisson 为名。 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。 比如,一杆受拉伸时,其轴向伸长伴随着横向收缩 (反之亦然 ),而横向应变 e 与轴向应变 e 之比称为泊松比 V。材料的泊松比一般通过试验方法测定。 可以这样记忆:空气的泊松比为 0,水的泊松比为 0.5,中间的可以推出。 主次泊松比的区别
2、Major and Minor Poissons ratio 主泊松比 PRXY,指的是在单轴作用下, X 方向的单位拉(或压)应变所引起的 Y方向的压(或拉)应变 次泊松比 NUXY,它代表了与 PRXY 成正交方向的泊松比,指的是在单轴作用下, Y方向的单位拉(或压)应变所引起的 X 方向的压(或拉)应变。 PRXY 与 NUXY 是有一定关系的: PRXY/NUXY=EX/EY 对于正交各向异性材料,需要根据材料数据分别输入主次泊松比, 但是对于各向同性材料来说,选择 PRXY 或 NUXY 来输入泊松比是没有任何区别的,只要输入其中一个即可 杨氏模量 杨氏 模量 (Youngs mod
3、ulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。 1807 年因英国医生兼物理学家 托马斯 杨 (Thomas Young, 1773-1829) 所得到的结果而命名。 根据 胡克定律 ,在物体的弹性 限度内,应力与应变成正比,比值被称为材料的杨氏模量, 它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。 杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 杨氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机
4、械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、 电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为范性形变。 协强( ):单位面积上所受到的力( F/S)。 协变( )是指在外力作用下的相对形变(相对伸长 DL/L)它反映了物体形变的大小。 胡克定律:在物体的弹性限度内,胁强于胁变成正比,其比例系数称为杨氏模量(记为 Y)。用公式表达为: Y=
5、( FL ) /( S L) Y 在数值上等于产生单位胁变时的胁强。它的单位是与胁强的单位相同。杨氏弹性模量是材料的属性,与外力及物体的形状无关。 弹性模量 拼音 :tanxingmoliang 英文名称: modulusofelasticity 定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。 单位:达因每平方厘米。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。 弹性模量 E 是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映
6、材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 说明 :又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性 t 变形难易程度的表征。用 E 表示。定义为理想材料有小形变时应力与相应的应变之比。 E 以单位面积上承受的力表示,单位为牛 /米 2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用 G 表示;压缩形变时的模量称为压缩模量,用 K表示。模量的倒数称为柔量,用 J 表示。 拉伸试验中得到的屈服极限 b 和强度极限 S ,反映了材料对力的作用的承受能力,而延伸率 或截面收缩率 ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的 难易程度,在实际
7、工程结构中,材料弹性模量 E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A0 为零件的横截面积。 由上式可见,要想提高零件的刚度 E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算 来说,弹性模量 E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力
8、成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量 E,也叫杨氏模量。 弹性模量 在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛 /米 2 表示 。 弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。 它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。 剪切模量 基本概念 剪切模量:材料常数 ,是剪切应力与应变的比值。又称切变模量或刚性模量。材料的力学性能指标之一。是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。 它表征材料抵抗切应变的能力。模量
9、大,则表示材料的刚性强。剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。 纤维复合材料层间剪切模量测试 随着纤维增强复合材料产 品的广泛应用,且产品设计均采用计算机,特别是航天航空部门、军工产品,计算越来越精确,因此,对材料性能要求更全面,如要求测出复合材料层板的层间剪切模量 G13, G23 等性能。根据我们的长期实践经验及理论分析,可以应用 GB/T1456 三点外伸梁弯曲法来测试复合材料层板的 G13、 G23 等。 三点外伸梁弯曲法的特点是,可以用梁外伸端的位移(挠度)独立地计算出梁材料的弯曲弹性模量。由梁当中的挠度及外伸端的位移(挠度)可
10、以一次计算出梁材料的层间剪切模量,不必象文献等解联立方程,其优越性显著。 筑坝堆石料的剪切模量 工开采的碎石 (堆石料 )是堆石坝主要的筑坝材料,为了较好地把握堆石料的等效动剪切模量和等效阻尼比特性,为堆石坝地震反应分析时的材料参数选取提供依据,笔者采用新研制的高精度大型液压伺服三轴仪 1,对若干堆石坝工程的十余种模拟堆石料进行等效动剪切模量与等效阻尼比试验,按统一的经验公式进行必要的参数换算或均化处理,给出了堆石料最大等效动剪切模量的估算式,并将其与国内外 8 座堆石坝现场弹性波试验深入比较,对各种堆石料的等效动剪切模量、等效阻尼比与动剪应变幅的依赖关系进行综合分析,给出试验的统计结果,建议
11、了归一化等 效动剪切模量与动剪应变幅以及等效阻尼比与动剪切应变幅关系的取值范围。 1 试料与试验条件 本文试验用料均为人工开采的堆石料,根椐实际工程设计级配要求和三轴仪试样直径模拟的试料级配曲线如图 1 所示。其中,公伯峡堆石坝的 3 种主堆石料采用的是同一种级配曲线。表 1 列出各试料的岩性、平均粒径、不均匀系数、初始孔隙比以及围压等试验条件。除了瀑布沟和关门山堆石料外,其它堆石料的试验均在等向固结条件下进行,振动时采用不排水状态。试样制备采用分层压实法,试验振动频率均为0.1Hz. 土的非线性性质通常采用等效线 性模型,即把土视为粘弹性体,用等效动弹模Eeq(或动剪切模量 Geq)和等效阻
12、尼比 h 这两个参数来反映土的动应力 -应变关系的非线性和滞后性,并把它们表示为动应变幅的函数。需要指出,试验中每级荷载振动12 15 次,不同的加荷周次实测的应力 -应变滞回曲线多少有一些差别,由此算出的等效动弹模和阻尼比也不完全一样。因此,在分析整理试验成果时,轴向应变、等效动弹模以及阻尼比均以第 3 次至第 10 次的平均值给出。 2 试验结果与分析 2.1 最大等效动弹模 (Eeq)max 的确定本文试验所测得最小轴向应变可信度为10-5 量级,尽管试验数据中还有小于 10-5 的一些数据,但其离散度较大。图 2 给出一组等效动弹模与轴向应变关系的实测结果。以往的研究表明 2,砂、砾石
13、、软岩无论是静力还是动力荷载条件下,当轴向应变小于 10-5 时均具有线弹性性质。因此,如图 2 所示,本文按 a 10-6 10-5 范围内堆石料呈线弹性假定推求最大等效动弹模 (Eeq)max。这种方法与现行的一些土工试验规范建议的方法不同,规范建议用 1/Eeq 与轴向应变 a 关系在纵轴上截距的倒数求出最大等效动弹模。事实上,这种方法基于双曲线模型的假定,对堆石料来说 1/Eeq a并不一定满足直线关系,且在延伸实验数据时含有较多的不确定性或任意性。 2.2最大等效动剪切模量 (Geq)max与平均有效应力 m的关系实测最大等效动弹模 (Eeq)max 与平均有效应力 m 在对数坐标下
14、可以近似地直线关系,表示为 (Eeq)max knm (1) 式中: k 是等效弹模系数, n 是模量指数, Eeq 和 m 的单位是 kPa. 为了便于比较,将最大等效动弹模 (Eeq)max 换算成最大等效动剪切模量(Geq)max,并引入 F(e)以消除孔隙比的影响,于是最大等效动剪 切模量可表示为 4 (Geq)max AF(e)nm (2) 式中: A 为等效剪切模量系数; e 为孔隙比; F(e) (2.17-e)2/(1+e)是孔隙比函数; (Geq)max 为最大等效动剪切模量, (Geq)max (Eeq)max/2(1+),其中泊桑比 根据试验条件取值,即不排水状态取 0.
15、5.剪应变 与轴向应变 a的关系为 =a(1+) (3) 表 2 列出 13 种堆石料的等效弹模系数 k、等效剪切模量系数 A、模量指数 n 和孔隙比函数 F(e).由表 2 可见,尽管 这 13 种堆石料的岩性及风化程度、初始孔隙比和级配 (包括平均粒径、不均匀系数 )都有较大的差别,但模量指数 n 的变化范围大致在0.4 0.6 之间,与文献 5统计的 8 种粗砾料的结果一致。而等效剪切模量系数 A的范围较大,从 2000 到 10000 之间变化。图 3 汇总了本文所完成的 13 种堆石料的试验结果。为了与现场弹性波试验结果比较,对所有试验数据再进行回归分析给出其平均线和上、下包线。可以
16、看出,平均模量指数为 0.5,平均等效动剪切模量系数为7645. 2.3 现场弹性波试验与室内三轴试验结果比较 70 年代末 80 年代初, 日本电力中央研究所对日本的 5 座不同岩质的堆石坝进行了弹性波试验并将其试验结果与室内大型三轴试验进行过比较 -7,日本建设省土木研究所曾对三保和七宿两座堆石坝进行过现场弹性波试验和室内大型三轴试验 -9。笔者等对我国关门山面板堆石坝进行了现场弹性波试验并与文献 6, 7做过比较分析 5。本文将再次引用这些成果,将室内试验测得的 13 种堆石料的平均最大等效动剪切模量及其上、下包线按下式换算成剪切波速进行比较 (4) 式中: g 是重力加速度 ,9.81
17、m/s2;t 是堆石体密度 ,t/m3;最大等 效动剪切模量(Geq)max 的单位应换算成 t/m2;剪切波速 vs 的单位是 m/s. 需要说明,式 (2)中的平均有效应力 9 m 1/3(1+)(1+K)tz (6) 式中:泊松比 取 0.35,主应力比 K 取 1.5, z 为深度, m. 图 4 是现场弹性波试验与室内三轴试验结果比较,其中曲线 4 是本文图 3 中建议的平均线方程,曲线 5 和曲线 6 分别是图 3 中的上包线和下包线。曲线 7 是关门山面板坝现场弹性波试验成果。 由此可见,本文室内大型三轴试验给出的范围基本包络了日本和我国的 8 座堆 石坝现场弹性波试验的结果。现
18、代堆石坝采用机械化碾压施工技术,堆石坝体的密度较高且都比较接近,因此 8 座堆石坝现场弹性波试验结果基本吻合,关门山面板坝的试验结果近似为平均值。总体来说,室内大型三轴仪试验所得到的结果比现场弹性波试验结果要低一些,这主要是由于实际工程堆石料颗粒间构造安定,而室内试验时堆石材料受到严重扰动以及试样尺寸限制所致。 2.4 归一化等效动剪切模量 Geq/(Geq)max 与动剪应变幅 关系图 5 给出归一化等效动剪切模量随动剪应变幅的依赖关系的典型实例,即吉林台与洪家度两座面板堆石坝主堆石料 的试验结果。一般来说,归一化等效动剪切模量随动剪应变幅增大而衰减,其衰减的程度主要受围压 c 或平均有效应
19、力 m 的影响。围压越低,归一化等效动剪切模量衰减就越快 (即衰减曲线偏左下侧 ),这一现象与砂的研究成果类似。由图 5 可以看出,归一化等效动剪切模量随动剪应变幅变化是有一定范围的,且变化范围因材料不同而异。洪家渡堆石料的上限比吉林台堆石料略高,且归一化等效动剪切模量随动剪应变幅的变化范围也比吉林台要大一些。但总体上看,两者的差别并不十分显著。 为了对各种堆石料的试验结果进行比较,将作者近年来用本文方法测得的各种堆石料的归一化等效动剪切模量与动剪应变幅的依赖关系汇总于图 6.图中每条曲线表示一种试验堆石料 Geq/(Geq)max 变化范围的平均值。从图中结果可以看出,尽管这些堆石料的岩性和
20、级配等有较大差别,且最大等效动剪切模量的变化范围也较大,但各种堆石料的归一化等效动剪切模量与动剪应变幅的依赖关系的离散性并不大。为便于应用,本文将图 6 中各种堆石料的试验结果再做平均处理,建议了一般堆石料归一化等效动剪切模量与动剪应变幅依赖关系的取值范围如图 7 所 示。 图 6 各种堆石料归一化等效动剪切模量 与动剪应变幅关系平均值的比较 图 7 堆石料归一化等效动剪切模量 与动剪应变幅关系取值范围 图 8 各种堆石料等效阻尼比 与动剪应变幅关系平均值的比较 图 9 堆石料等效阻尼比 与动剪应变幅关系取值范围 2.5 等效阻尼比 h 与动剪应变幅 的关系大量的研究表明, 4, 7, 8,动
21、剪切模量越高等效阻尼比就越低,等效阻尼比不仅随动剪应变幅 的增大而增加,而且还与围压 c或平均有效应力 m有关,在相同的动剪应变幅情况下,围压 c增大 ,等效阻尼比减小。此外,固结应力比 K 对等效阻尼比也有影响,即在相同的围压 c及动剪应变幅情况下,固结应力比 K 增加则等效阻尼比减小。本文汇总了各种堆石料的等效阻尼比与动剪应变幅的关系如图 8,图中每条曲线即代表一种试验堆石料的h 变化范围的平均值。可以看出,各种堆石料的等效阻尼比随动剪应变幅变化的离散度比归一化等效动剪切模量随动剪应变幅变化的离散度要大一些。图 9 是将图 8中各种堆石料的试验结果再做平均处理,建议一般堆石料等效阻尼比与动
22、剪应变幅依赖关系的取值范围。总体上看,堆石料的等效阻尼比不高,当动剪应变幅 =10-5 时,等效阻尼比约 2%左右, =10-4 时,等效阻尼比接近 5%,而当动剪应变幅大于 =10-4后,阻尼比上升得较快,这说明堆石料进入较强的非线性,应变滞后于应力的现象越加明显。需要指出,等效阻尼比的离散范围比较大,这一方面是堆石料本身含有的不确定性引起,另一方面也与试验数据的分析整理方法有关。 3 结语 (1)本文依据室内高精度大型三轴试验给出的十余种堆石料最大等效动剪切模量的估算公式与国内外 8 座堆石坝现场弹性波试验结果基本吻合,由此说明,尽管堆石坝筑坝材料的级配、初始孔隙比、岩性以及风化 程度等不
23、尽相同,但由于采用重型碾机械化施工,现代堆石坝的实际填筑密度较高,坝体内剪切波速分布也大体接近。 (2)在尚未取得堆石料试验数据的情况下进行堆石坝地震反应分析,可参考本文图 3 和图4 粗略估计最大等效动剪切模量,参考图 7 和图 9 确定归一化等效动剪切模量、等效阻尼比与动剪应变幅的关系。选取计算参数时应主要考虑岩质硬度、静抗剪强度等对最大等效动剪切模量以及衰减关系的影响。应该说,按本文建议公式或给出的范围估算,可以满足工程需要。 (3)与粘土和砂相比,筑坝堆石料的试验设备和试验技术方面都存在许多的困难,迄今为止, 有关堆石料的动剪切模量和阻尼比方面的试验资料尚不多见,作者将进一步积累资料做
24、深入地研究。 弹性模量和切变模量 材料在外力作用下发生变形。当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克 (Hooke)定律: 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程上,弹性模量则是材料刚度的度量。 实际上,理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。 对非晶体,甚至对某些多晶体,在较小的应力时,可能会出现粘弹性现象。粘弹性变形是既与
25、时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形量方面特征。粘弹性变形是高分子材料的重要力学特性之一。 当施加的应力超过弹性极限时,材料发生塑性变形,即产生不可逆的永久变形。通过塑 性变形,不但可使材料获得预期的外形尺寸,而且可使材料内部组织和性能产生变化。 单晶体塑性变形的两个基本方式为滑移和孪生。滑移和孪生都是切应变,而且只有当外加切应力分量大于晶体的临界分切应力 tC 时才能开始。然而,滑移是不均匀切变,孪生为均匀切变。 对于多晶体而言,要求每个晶粒至少具备由 5 个独立的滑移系才能满足各晶粒在变形过程中相互制约和协调。多晶体中,在室温下晶界的存在对滑移起阻碍作用,而且实践证明,多
26、晶体的强度随其晶粒细化而提高,可用著名的 Hall-Petch 公式来加以描述 弹簧钢的切变模量取值 金属弹簧材料种类繁多,现在大量使用的是弹簧钢。在选用弹簧钢进行弹簧设计计算时,要用到材料的切变模量或弹性模量。目前,国内外几乎所有的设计资料和有关教科书 1以及 GB T1239 6-92圆柱螺旋弹簧设计计算等对金属弹簧材料的切变模量都以定值给出。但其中的圆柱螺旋弹簧、蜗卷弹簧、非线性特性线螺旋弹簧、多股螺旋弹簧等,如按上述传统设计资料中给出的切变模量取值,那么, 计算的弹簧变形量与其实际测量的变形量有较大的误差。现以我厂生产的 NYL-2000 型压力试验机上使用的测力弹簧为例试述如下。 1
27、 设计计算的弹簧伸长量与实测伸长量 大、小测力弹簧 (由上海中国弹簧厂加工 )是普通圆柱螺旋拉伸弹簧。弹簧材料为60Si2MnA,热处理 45 50HRc。其部分设计参数如表 1。 表 1 名称钢丝直径 (mm)弹簧中径 (mm)有效圈数额定载荷 (N) 大测力弹簧 16100125000 小测力弹簧 129112.52000 如按表 1 中的设计参数,并取传统的切变模量值 G 8104MPa 4,计算的大、小测力弹簧在额定载荷下的伸长量分别为 91.55mm 和 90.85mm。弹簧伸长量公式 4: 式中: P额定载荷; D弹簧中径; n弹簧有效圈数; d弹簧钢丝直径; G材料切变模量。 上
28、述只是设计计算的弹簧伸长量。众所周知,由于加工后的成品弹簧,特别是热绕成形并需经热处理的弹簧,不可避免地存在着一定的尺寸偏差。如弹簧钢丝直径、弹簧中径等都可能与设计时的参数不同,甚至偏差很大 4。这就导致了弹簧的实际伸长量 与设计计算的伸长量存在着一定的误差。表 2 就是笔者根据检验时测量的弹簧的有关尺寸,再按传统的材料切变模量取值计算的伸长量与其实际测量的伸长量比较。 表 2 单位: mm 序号弹簧外径 (D2)弹簧钢丝直径 (d)弹簧中径 (D)额定载荷下的伸长量 (F) 实测值按实测尺寸代入的计算值计算值与实测值之差 大测力弹簧 1116.515.75100.759699.723.72
29、2113.515.897.78789.792.79 3116.215.3100.9108112.484.48 小测 力弹簧 410211.990.187.591.193.69 5103.2103.511.7591.697100.803.80 6103.511.4692.04109113.014.01 注:额定载荷下计算的伸长量取 G 8104MPa。 从表 2 中可以看出,额定载荷下的伸长量,其中按实际测量的弹簧有关尺寸计算的伸长量,要比设计计算的伸长量分别大 (-1 76 20 93)mm 和 (0 34 22 16)mm。而仍与其实测值相差 3 21 4 15。为什么设计计算的弹簧伸长量与
30、其实测值相差如 此之大 ?正如弹簧中提出: “弹簧的特性线,即使是最精确和最仔细的计算,其结果和实际的数值总有一定程度的差异,这是由于制成的弹簧不可避免的存在着一定的工艺误差,以及材料组织非绝对均匀所造成 ”。又 “由于尺寸误差和材料因素的影响,计算的特性线与实测值有一定的差异 ”。 “因此,对特性线有较严格要求的弹簧应经过试验,反复修改有关尺寸后,方可成批生产 ” 1。可见,弹簧变形量的实测值与其设计计算值的确存在着一定的误差。然而,即使按实际测量的弹簧尺寸代入计算的伸长量为什么仍与其实测值有较大的误差呢 ?笔者认为,除去弹簧的 “尺寸误差 ”(含测量误差 )和 “材料因素 ”(内部组织非绝
31、对均匀 )的影响,弹簧的实际伸长量与按其实测尺寸计算的伸长量之间存在的误差,主要原因是由于弹簧材料经过热处理后的切变模量发生了变化而造成的。 2 热处理后的弹簧钢的切变模量 为了使弹簧能获得较高的屈服极限、弹性极限、高的屈强比和疲劳强度,弹簧一般都要经过热处理。而经过热处理的弹簧材料的弹性模量和切变模量却发生了变化。其中,切变模量变化较大,如常用的弹簧钢 60Si2MnA 经过淬火和不同温度回火处理的弹性模量和切变模量抄于表 3。 表 3 弹性模量与切 变模量 回火温度 350400450480 Ekg/mm220270(360 回火 )2082320960(440 回火 )20860 G81
32、4382458316 注:回火前先经 860 淬火 表 3 说明弹簧材料经过淬火,回火处理后的切变模量 G 变化较大,在一定范围内随回火温度的升高而增大,并不再是传统的 8104MPa 等。 3 取热处理后的切变模量值计算的弹簧伸长量与其实测值比较 如取表 3 中 450 回火后的切变模量值 83160MPa,硬度约为 47HRc,再按表 2中测力弹簧的实测尺寸代入公式计算的结果列于表 4。 表 4 单位: mm 序号额定载荷下的弹簧伸长量 实测值取 G=83160MPa 的计算值计算值与实测值相对误差 (%) 19695 93-0 07 28786 38-0 71 3108108.210.2
33、1 487.587.720.25 59796.97-0.03 6109108.72-0.26 注:序号同表 2。 显然, 表 4 中按热处理后的切变模量取值计算的弹簧伸长量与其实测值较为接近。其中最大的误差为 -0 71。这说明当弹簧尺寸、载荷等相同时,其伸长量决定于材料的切变模量。或者在不考虑其它条件时,仅因热处理改变了材料的切变模量,如60Si2MnA 经 450 回火处理后的切变模量 83160MPa 与传统的 8104MPa 相比就可使弹簧的变形量相差约 3 95;而与 GB T1239 6-92 中规定的 78103N mm2则相差 6 62。如果弹簧材料为铬钒钢,如 50CrVA,
34、取其 600 回火时 (硬度约为47 5HRc)的切变模量 G 值为 86600MPa 6 G 8104MPa 和 78103N mm2相比较,分别相差 8 25和 11 03。亦即,当弹簧材料、钢丝直径、弹簧中径、有效圈数以及结构、载荷等都保持不变时,只是由于材料经过热处理后的切变模量值改变,将使弹簧的变形量早在设计计算时就已产生了先天性误差 3 95或 6 62,甚至更达 8 25或 11 03。这个误差并不是由于弹簧尺寸和材料内部的组织不均匀所造成的,而是人为的误处理或忽略了热处理对材料切变模量的影响。因为,切变模量不仅仅是材料本身固有的特性,而且还与热处理状态有 关,并决定弹簧的变形量
35、与载荷之间的关系。为此,笔者认为,在对特性线要求较高的螺旋弹簧进行设计计算时,似应根据弹簧的服役条件,如工作温度、载荷等,且考虑热处理对其切变模量的影响。即按热处理后的弹簧材料的切变模量取值,而不是传统的给定值。即使对于特性线要求不高的螺旋弹簧来说,也不该不考虑弹簧经过热处理后的切变模量的变化。至于具体应取何值,这主要根据弹簧的工作条件、载荷性质等确定。一般情况下,弹簧需经淬火加中温回火处理。按 GB T1239 6-92 规定,热处理 45HRc 50HRc。只要在相应的回火温度和硬度要求 范围内选取切变模量即可。 至于合金为单相固溶体时,由于溶质原子存在会呈现固溶强化效果,对某些材料还会出
36、现屈服和应变时效现象;当合金为多相组织结构时,其变形还会受到第二相的影响,呈现弥散强化效果。 而陶瓷晶体,由于其结合键(离子键、共价键)的本性,再加上陶瓷晶体中的滑移系少,位错的 b 大,故其塑性变形相对金属材料要困难得多,只有以离子键为主的单晶陶瓷才能进行较大的塑性变形。对于高分子材料,其塑性变形是靠粘性流动而不是靠滑移产生的,故与材料粘度密切相关,而且受温度影响很大。 材料经塑性变形后,外 力所做的功部分以储存能形式存在于材料内部,从而使系统的自由能升高,处于不稳定状态。故此,回复再结晶是材料经过冷变形后的自发趋势,加热则加快这一过程的发生。 当加热温度较低,时间较短时,发生回复。此时,主要表现为亚结构的变化和多边化过程,第一类内应力大部消除,电阻率有所下降,而对组织形态和力学性能影响不大。 当加热温度较高,时间较长时就发生再结晶现象。再结晶时,新的无畸变等轴晶将取代冷变形组织,其性能基本上回复到冷变形前的状态。 再结晶完成后继续加热时,晶粒将发生长大现象。