收藏 分享(赏)

第七章金属和半导体的接触.ppt

上传人:精品资料 文档编号:9092503 上传时间:2019-07-23 格式:PPT 页数:64 大小:506KB
下载 相关 举报
第七章金属和半导体的接触.ppt_第1页
第1页 / 共64页
第七章金属和半导体的接触.ppt_第2页
第2页 / 共64页
第七章金属和半导体的接触.ppt_第3页
第3页 / 共64页
第七章金属和半导体的接触.ppt_第4页
第4页 / 共64页
第七章金属和半导体的接触.ppt_第5页
第5页 / 共64页
点击查看更多>>
资源描述

1、第七章 金属和半导体的接触,主要内容,7.1 金属和半导体接触及其能级图 7.2 金属和半导体接触整流理论7.3少数载流子的注入和欧姆接触,掌握阻挡层与反阻挡层的形成,肖特基势垒的定量特性,欧姆接触的特性。,一、功函数,1.金属的功函数Wm,金属的功函数表示一个起始能量等于费米能级的电子,由金属内部逸出到表面外的真空中所需要的最小能量。,E0为真空中电子的能量,又称为真空能级。,7.1 金属和半导体接触及其能级图,金属中的电子在势阱中运动,2.半导体的功函数Ws,E0与费米能级之差称为半导体的功函数。,表示从Ec到E0的能量间隔:,称为电子的亲和能,它表示要使半导体导带底的电子逸出体外所需要的

2、最小能量。,式中:,N型:半导体,P型半导体:,设想有一块金属和一块N型半导体,并假定金属的功函数大于半导体的功函数,即:,二、金属与半导体的接触及接触电势差,1. 阻挡层接触,接触前:,半导体中的电子,金属,+,Vms称为金属与半导体接触电势差。,接触后: (间隙大),半导体电势提高,金属电势降低,直到二者费米能级相平,紧密接触:,表面形成空间电荷区,内部产生自建电场。,表面势Vs:空间电荷区两端的电势差。,忽略间隙中的电势差时的极限情形,半导体一边的势垒高度为:,金属一边的势垒高度为:,(Vs0),金属与N型半导体接触时,若WmWs,半导体表面形成表面势垒。在势垒区,空间电荷主要由电离施主

3、形成,电子浓度比体内小得多,是一个高阻区域,称为阻挡层。界面处的势垒通常称为肖特基势垒。,E,2. 反阻挡层接触(欧姆接触),若Wm0, 能带向下弯曲。这里电子浓度比体内大得多, 因而是一个高电导的区域,称之为反阻挡层。,E,金属与P型半导体接触时,若WmWs,能带向 上弯曲,形成P型反阻挡层。,金属与P型半导体接触时,若WmWs,形成空穴的表面势垒。在势垒区,空间电荷主要由电离受主形成,空穴浓度比体内小得多,也是一个高阻区域,形成P型阻挡层。,肖特基接触(整流接触) 金属/半导体接触欧姆接触,形成n型和p型阻挡层的条件,三. 表面态对接触势垒的影响,1.表面态和表面能级: 表面态:源于半导体

4、表面晶格的不完整性,表面吸附外来原子或离子。它是局域在表面附近的新电子态。 表面态能级 :大多数半导体的 在Ev以上Eg/3的地方。,2.表面态的类型,1)施主型:电子占满时呈中性,失去电子带正电。以下的表面态空着,表面带正电。2)受主型: 能级空时为电中性,接受电子带负电。以上的表面态被电子填充,表面带负电。,3.表面态对接触势垒的影响,受主态n型半导体能带图,无表面态时半导体功函数:,有表面态时半导体功函数:,因半导体与表面态交换电子,(不与金属接触时)半导体 表面能带发生弯曲qVD , 势垒高度随Wm不是线性变化。,半导体存在高密度表面态时,势垒高度与金属功函数无关,称为高表面态密度钉扎

5、(pinning),称为巴丁模型。,小结,半导体表面态密度很高时(1017eV-1.cm-2 ),它可屏蔽金属接触的影响,使得势垒高度与金属功函数几乎无关,而由半导体表面性质决定。 当表面态密度不是很高时,金属功函数对势垒高度产生不同程度的影响。,7.2 金属和半导体接触整流理论,一.外加电压对n型阻挡层(Vs0)的作用,1.外加电压V=0,半导体侧电子势垒高度:,无净电流,2.加正向电压V0,半导体侧电子势垒高度降低为-q(Vs)0+V) 金属侧电子势垒高度不变。 电流方向M S,由S M的电子形成正向电流。,3.加反向电压V0,半导体侧电子势垒高度增加为: -q(Vs)0+V) 电流方向S

6、 M ,由M S 的电子形成反向电流,阻挡层的I/V特性,正向电流随外加正向电压增加而增大; 金属一侧势垒很高,反向电流很小,且 趋于饱和。 阻挡层具有单向导电性整流特性。,P型半导体,n型和p型阻挡层的作用,阻挡层具有整流特性; 正向电流规定为半导体多子形成的电流;n型: 金属极加正电压,V0,形成电子由半导体到金属的正向电流;电流方向:金属半导体 p型:金属极加负电压V0,形成空穴由半导体到金属的正向电流;电流方向:半导体金属,1.扩散理论,流过势垒的电流主要由电子在耗尽区的扩散和漂移过程决定。 适于势垒区宽度远大于电子的平均自由程的半导体,二.理论模型,耗尽区:杂质全电离, 电荷由杂质电

7、离形成。电场仅存在空间电荷区。 方向指向半导体表面。,泊松方程:,利用边界条件:,势垒中的电场,V0, 势垒宽度 xd随V增加而减小,半导体 侧势垒降低。 V0,势垒宽度 xd随V 增加而增加,半导体侧势垒升高 这种依赖于外加电压的势垒,称为肖特基势垒。,最大电场随反向电压的增加而增大,正向电压的增加而减小,且随掺杂浓度的增加而增大; 势垒区宽度随反向电压的增加而增大,正向电压的增加而减小,且随掺杂浓度的增加而减小,,注意:,讨论:,流过势垒的电流密度:,半导体势垒区与中性区存在浓度梯度,所以有扩散电流。有外加电压时,存在漂移电流。,利用:,得到:,根据:,同乘以,得到:,积分:,利用边界条件

8、:,由于,随x增加迅速减小,只考虑在x=0附近,2xxdx2,积分,得到:,其中,讨论: 1)当qVk0T,有J=JsDexp(qV/k0T),为通常情况。 2)当-qVk0T,则J=-JsD,不饱和,JsD随外加电压的 升高而增加。,2.热电子发射理论,假设流过势垒的电流主要受电子越过势垒的过程限制。 适于电子的平均自由程远大于势垒区宽度的半导体。,平衡时,界面处半导体侧的电子浓度:,单位时间入射到单位面积上的电子数为:nVth/4, 平衡时,由半金的热电子发射电流密度与金半都为:,当V0时,界面处半导体侧势垒高度降低,电子浓度:,当V0时,由半金的电子流密度:,金属一侧势垒高度不变,实际净

9、正向电流密度为:,其中:,令,其中:,3.两个理论模型的比较,1、扩散理论的: J = J exp(qV kT ) 1JSD不饱和, 与外加电压相关。热电子发射理论:J = J exp( qV / kT ) 1 JsT与外加电压无关,但强烈依赖于温度。 2、,扩散理论适于势垒区宽度远大于电子的平均自由程的半导体,如氧化亚铜,非晶硅。 热电子发射理论适于势垒区宽度远小于电子的平均自由程的半导体,如Ge、Si、GaAs等。,三.理论模型与实测结果的偏差(影响因素),1.镜像力的影响:,在金属、真空系统中,一个在金属 外面的电子,要在距离金属表面同样 距离(在金属内部)感应出等量的 正电荷,这个正电

10、荷称为镜像电荷, 电子和镜像电荷之间的吸引力称为 镜像力。,镜像力引起的势垒降低, 并随反向电压的增加而 增大。从而使反向电流 增加。,镜像力在反向电压比较大 的情况下(VVD), 镜像力效应才比较明显, 它主要对反向特性影响大。,2.隧道效应的影响,能量低于势垒顶的电子有一定几率穿过这个势垒,穿过的几率取决于电子的能量和势垒的厚度。,隧道效应引起的势垒降低随反向电压的增加而增大从而使反向电流增加。它主要对反向特性影响比较大。,超薄势垒对载流子无阻挡能力,电子可以自由穿过势垒。通过半导体表面重掺杂可以获得超薄势垒,形成隧道电流,从而制备可获得欧姆接触。,四.肖特基势垒二极管,利用肖特基效应由金

11、半整流接触制作的二极管称为肖特基势垒二极管。 1.特点(与pn结二极管相比):1)它是多子器件,较好的高频特性。2)有较低的正向导通电压(0.3V左右)。 2.应用:高速集成电路,微波器件等。,7.3少数载流子的注入和欧姆接触,1、少数载流子的注入,n型阻挡层,扩散运动 漂移运动,扩散运动 漂移运动,电子,空穴,当正向电压较小时,电场较小,漂移电流较小, J扩J漂 多子扩散电流远高于少子扩散电流,通常忽略少子扩散电流。正向电流为多子扩散电流。,空穴电流密度:,当正向电压足够高时,电场较大,电场引起很大的载流子漂移电流,使得少数载流子电流在电流中起主导作用。,对n型阻挡层,小注入时:,少数载流子

12、注入比:,为了降低 必须采用有高的ND (相当于低电阻率 材料)和小的ni(相当于宽禁带材料)的金属-半导体 系统 。,2、欧姆接触,1)欧姆接触:不产生明显的附加阻抗,电流在其上的产生的压降远小于在器件本身上所产生的压降。 2)欧姆接触的重要性:作为器件引线的电极接触,要求在金属和半导体之间形成良好的欧姆接触。在超高频和大功率器件中,欧姆接触是设计和制造中的关键问题之一。,3)欧姆接触的制备方法,(1)选择适当金属,使其和半导体形成反阻挡层。,n型WmWs,因半导体存在高密度表面态,实际很难做到形成反阻挡层。,(2)利用隧道效应半导体表面高掺杂。,电子遂穿势垒的几率取决于: 电子能量和势垒宽

13、度。,势垒宽度:,当掺杂浓度很高时,势垒很窄,形成很大的隧道电流:,高掺杂时,接触电阻,当ND 1019cm3时,接触电阻强烈依赖于掺杂浓度;浓度越高,电阻越低。,低、中等掺杂时,对势垒接触,电流适 于热电子发射理论,接触电阻:,当N 1017cm3 接触电阻与掺杂浓度无关。,形成欧姆接触的方法,在半导体表面薄层形成高掺杂层, 通常做成M/n+/n 或M/p+/p结构获得良好的欧姆接触。金属(或合金、金属硅化物)可采用蒸发、溅射、电镀等。,半导体表面粗磨或喷砂,表面形成大量复合中心。使表面耗尽区的复合成为控制电流的主要机构,接触电阻大大降低,近似称为欧姆接触。选择低势垒欧姆接触。,小 结,需掌

14、握的公式(由n型半导体推导):半导体侧势垒高度(Wm Ws):,金属侧势垒高度,肖特基模型,巴丁模型,热电子发射理论I/V特性,其中,JST与外加电压无关,但强烈依赖于温度。,扩散理论I/V特性,其中,JSD不饱和, 与外加电压相关,耗尽层宽度:,势垒区宽度随掺杂浓度的增加而减小, 随反向电压的增加而增大,正向电压的增加而减小,接触电阻:,高掺杂形成隧道效应常用来制备制备欧姆, 其接触电阻随掺杂浓度增加而减小,基本概念,1.表面态施主型电子占满时呈中性,失去电子带正电。受主型能级空时为电中性,接受电子带负电。 2.表面态能级 :电子刚好填满其下的所有态时呈中性。EF位于 以上,表面态为受主型,

15、EF位于 以下,为施主型,,3.扩散理论适用于势垒区宽度远大于电子的平均自由程的半导体。 热电子发射理论适用于势垒区宽度远小于电子的平均自由程的半导体, 常用半导体Ge、Si、GaAs适用于热电子发射理论。,基本理论,金属与n型半导体接触WmWs 表面电子浓度低阻挡层WmWs 表面空穴浓度高反阻挡层,阻挡层的整流理论,1)阻挡层具有整流特性; 2)正向电流为半导体多子形成的电流; 3)n型: 金属极加正电压,V0,形成电子半导体 金属的正向电流;电流方向:从金属 半导体p型:金属极加负电压V0,形成空穴由半导体 金属的正向电流;正向电流方向:半导体 金属镜象力和隧道效应均对反向特性的影响显著,

16、 势垒降低使反向电流增大。,作业,P194 3,4 ,7,8.,课堂思考题,金属和半导体的功函数是如何定义的?半导体的功函数与哪些因素有关? 分析n型和p型半导体形成阻挡层于反阻挡层的条件。 分别画出半导体与金属接触时的能带图(分为WsWm和WsWm,并忽略表面态的影响) 什么叫欧姆接触?金属与重掺杂的半导体能形成欧姆接触,简单其物理原理。 什么叫少数载流子注入效应? 镜像力和隧道效应如何影响金-半接触势垒的? 比较扩散理论和热电子发射理论在解决肖特基二极管整流特性时区别在什么地方? 画图说明肖特基势垒高度,并指出在一般情况下,它与哪些物理量有关?,习题课,例1设p型硅NA=1017/cm3,

17、试求:(1)室温下费米能级的位置和功函数(2)不计表面态的影响,求该p型硅分别与铂(Pt)和银(Ag)接触后是否形成阻挡层? (3)如果能形成阻挡层,求半导体一边的势垒高度。已知:WAg=4.81eV, WPt=5.36eV,Nv=1019/cm3 Eg=1.12eV,硅的电子亲和能X=4.05eV 例2有n型硅与某一金属形成肖特基二极管,其参数为Wm=4.7eV, X=4.0eV, Nc=1019/cm3 , Nc=1019/cm3 ND=1015/cm3 ,硅的相对介电常数r=12,忽略表明态,计算室温下: (1)零偏时势垒高度接触电势差和势垒宽度。 (2)正偏为0.2V时的热发射电流。设

18、A*/A=2.1,A=120A/cm3,例3 NA=1017/cm3 的p型锗,室温下功函数为多少?,不考虑表面态的影响,它分别和Al、 Au、Pt接触时形成阻挡层还是反阻挡层?锗的电子亲和能为4.13eV。设WAl=4.18eV, WAu=5.20eV, WPt=5.43eV.例4 有n型硅与某一金属形成肖特基二极管,已知其接触后半导体一侧的势垒高度为0.50eV, ND=1015/cm3 , Nc=2.81019/cm3 电子亲和能为4.05eV,Lp=10m,Dp=150cm2/s, ni=1.51010/cm3 A*=252(cm2.K)2 室温T下,求(1)加0.5V正向偏压后,计算室温下注入少子的电流密度,(2)计算金属的功函数,(3)用热电子发射理论计算总的电子电流密度,(4)计算少子注入比。,例5 ND=1016/cm3 的n型锗,与金属制成肖特基二极管。已知Vd=0.4V。求加上0.3V电压时的正向电流密度。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报