收藏 分享(赏)

数列极限的运算性质.doc

上传人:精品资料 文档编号:9088617 上传时间:2019-07-23 格式:DOC 页数:9 大小:265.50KB
下载 相关 举报
数列极限的运算性质.doc_第1页
第1页 / 共9页
数列极限的运算性质.doc_第2页
第2页 / 共9页
数列极限的运算性质.doc_第3页
第3页 / 共9页
数列极限的运算性质.doc_第4页
第4页 / 共9页
数列极限的运算性质.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、极限的运算教学目标1熟练运用极限的四则运算法则,求数列的极限2理解和掌握三个常用极限及其使用条件培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力3正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想教学重点与难点使用极限四则运算法则及 3 个常用极限时的条件教学过程(一)运用极限的四则运算法则求数列的极限师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个常用极限: =0, C=C, qn=0(|q|1)来解决。n1limlilim例 1:求下列极限:14537li)(2n师:(1)中的式子如何转化才能求出极限

2、生:可以分子、分母同除以 n3,就能够求出极限师:(2)中含有幂型数,应该怎样转化?师:分子、分母同时除以 3n-1 结果如何?生:结果应该一样师:分子、分母同时除以 2n 或 2n-1,能否求出极限?(二)先求和再求极限例 2 求下列极限:由学生自己先做,教师巡视判断正误生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况此题当n,和式成了无限项的和,不能使用运算法则,所以解法 1 是错的师:解法 2 先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限第(2)题应该怎样做?生:用等比数列的求和公式先求出分母的和=12师:例 2 告诉我们不能把处理有

3、限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件例 3 求下列极限:师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策生:(1)题是连乘积的形式,可以进行约分变形生:(2)题是分数和的形式,可以用“裂项法”变形例 4 设首项为 1,公比为 q(q0)的等比数列的前 n 项和为 Sn,师:等比数列的前 n 项和 Sn 怎样表示?师:看来此题要分情况讨论了师:综合两位同学的讨论结果,解法如下:师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化同(三)公比绝对值小于 1 的无穷等比数列前 n 项和的极限师:利用无穷等比数列

4、所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于 1 的无穷等比数列各项和的公式:例 5 计算:题目不难,可由学生自己做师:(1)中的数列有什么特点?师:(2)中求所有奇数项的和实质是求什么?(1)所给数列是等比数列;(2)公比的绝对值小于 1;(四)利用极限的概念求数的取值范围师:(1)中 a 在一个等式中,如何求出它的值生:只要得到一个含有 a 的方程就可以求出来了师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程?生:先求极限师:(2)中要求 m 的取值范围,如何利用所给的等式?|q|1,正好能得到一个含有 m 的不等式,解不等式就能求出 m 的范围解得 0m4

5、师:请同学归纳一下本课中求极限有哪些类型?生:主要有三种类型:(1)利用极限运算法则和三个常用极限,求数列的极限;(2)先求数列的前 n 项和,再求数列的极限;(3)求公比绝对值小于 1 的无穷等比数列的极限师:求数列极限应注意的问题是什么?生甲:要注意公式使用的条件生乙:要注意有限项和与无限项和的区别与联系上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充(五)布置作业1填空题:2选择题:则 x 的取值范围是 的值是 A2 B-2 C1 D-1作业答案或提示(7)a2选择题:(2)由于所给两个极限存在,所以 an 与 bn 的极限必存在,得方程以上习题教师可以根据学生的状况,酌情选

6、用课堂教学设计说明1掌握常用方法,深化学生思维数学中对解题的要求,首先是学生能够按部就班地进行逻辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用例 1 的设计就是以此为目的的2展示典型错误,培养严谨思维第二课时 数列极限的运算性质教学目标:1、掌握数列极限的运算性质;会利用这些性质计算数列的极限2、掌握重要的极限计算公式:lim(1+1/n) n=e教学过程:一、数列极限的运算性质如果 liman=A,limb n=B,那么(1)li

7、m(a n+bn)= liman+ limbn =A+B(2)lim(a n-bn)= liman- limbn =A-B(3)lim(a nbn)= liman limbn =AB(4)lim(a n/bn)= liman/ limbn =A/B(B0,b n0)注意:运用这些性质时,每个数列必须要有极限,在数列商的极限中,作为分母的数列的项及其极限都不为零。数列的和的极限的运算性质可推广为:如果有限个数列都有极限,那么这有限个数列对应各项的和所组成的数列也有极限,且极限值等于这有限个数列的极限的和。类似地,对数列的积的极限的运算性质也可作这样的推广。注意:上述性质只能推广为有限个数列的和与

8、积的运算,不能推广为无限个数列的和与积。二、求数列极限1、 lim(5+1/n)=5 2、lim(n 2-4)/n2=lim(1-4/n2)=13、 lim(2+3/n)2=4 4、lim(2-1/n)(3+2/n)+(1-3/n)(4-5/n)=105、lim(3n 2-2n-5)/(2n2+n-1)=lim(3-2/n-5/n2)/(2+1/n-1/n2)=3/2分析:由于 lim(3n2-2n-5)及 lim(2n2+n-1)都不存在,因此不能直接应用商的极限运算性质进行计算。为了能应用极限的运算性质,可利用分式的性质先进行变形。在变形时分子、分母同时除以分子、分母中含 n 的最高次数项

9、。4、 一个重要的数列极限我们曾经学过自然对数的底 e2.718,它是一个无理数,它是数列(1+1/n) n 的极限。lim(1+1/n)n =e (证明将在高等数学中研究)求下列数列的极限lim(1+1/n) 2n+1 =lim(1+1/n)n (1+1/n)n (1+1/n)=ee1=e2lim(1+3/n)n =lim(1+1/(n/3)n/3 3=e3分析:在底数的两项中,一项为 1,另一项为 3/n,其中分子不是 1,与关于 e 的重要极限的形式不相符合,为此需要作变形。其变形的目标是将分子中的 3 变为 1,而不改变分式的值。为此可在 3/n 的分子、分母中同时除以 3,但这样又出

10、现了新的矛盾,即分母中的 n/3 与指数上的 n 以及取极限时 n不相一致,为此再将指数上的 n 改成 n/33,又因为 n与 n/3是等价的。lim(1+1/(n+1)n=lim(1+1/(n+1)(n+1)-1=lim(1+1/(n+1)n+1/lim(1+1/(n+1)=e练习:计算下列数列的极限lim(3-1/2n)=3 lim(1/n2+1/n-2)(3/n-5/2)=5 lim(-3n2-1)/(4n2+1)=-3/4lim(n+3)(n-4)/(n+1)(2n-3)=1/2 lim(1+3/2n) 2=1 lim(1+1/3n)2 (2-1/(n+1) 3=18=8lim(1+1/n)3n+2=lim(1+1/n)n 3(1+1/n) 2=e3 lim(1+4/n)n=e4 lim(1+1/(n+2)n+1=elim(n+5)/(n+4)n=lim(1+1/(n+4) n=e lim(1+2/(n+1) n=e2 lim(n+5)/(n+2) n=lim(1+3/(n+2)(n+2)/3 3/(1+3/(n+2) 2=e3

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报