1、光纤连接器 光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。光纤连接器按传输媒介的不同可分为常见的硅基光纤的单模、多模连接器,还有其它如以塑胶等为传输媒介的光纤连接器;按连接头结构形式可分为:FC、SC、ST、LC、D4 、DIN、MU、MT 等等各种形式。其中, ST 连接器通常用于布线设备端,如光纤配线架、光纤模块等;而 SC 和 MT 连接器通常用于网络设备
2、端。按光纤端面形状分有 FC、PC(包括 SPC 或 UPC)和 APC;按光纤芯数划分还有单芯和多芯(如 MT-RJ)之分。光纤连接器应用广泛,品种繁多。在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。以下是一些目前比较常见的光纤连接器: (1)FC 型光纤连接器 这种连接器最早是由日本 NTT 研制。FC 是 Ferrule Connector 的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC 类型的连接器,采用的陶瓷插针的对接端面是平面接触方式(FC )。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗
3、性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。 (2)SC 型光纤连接器 这是一种由日本 NTT 公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸隖 C 型完全相同,。其中插针的端面多采用 PC 或 APC 型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。 ST 和 SC 接口是光纤连接器的两种类型,对于 10Base-F 连接来说,连接器通常是 ST类型的,对于 100Base-FX 来说,连接器大部
4、分情况下为 SC 类型的。ST 连接器的芯外露,SC 连接器的芯在接头里面。(3) 双锥型连接器(Biconic Connector) 这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个内部装有双锥形塑料套筒的耦合组件组成。 (4) DIN47256 型光纤连接器 这是一种由德国开发的连接器。这种连接器采用的插针和耦合套筒的结构尺寸与 FC 型相同,端面处理采用 PC 研磨方式。与 FC 型连接器相比,其结构要复杂一些,内部金属结构中有控制压力的弹簧,可以避免因插接压力过大而损伤端面。另外,这种连接器的机械精度较高,因而介入损耗值
5、较小。 (5) MT-RJ 型连接器 MT-RJ 起步于 NTT 开发的 MT 连接器,带有与 RJ-45 型 LAN 电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔 0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。 (6) LC 型连接器 LC 型连接器是著名 Bell(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通 SC、FC 等所用尺寸的一半,为 1.25mm。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模 SFF 方面,LC类型的连
6、接器实际已经占据了主导地位,在多模方面的应用也增长迅速。 (7) MU 型连接器 MU(Miniature unit Coupling)连接器是以目前使用最多的 SC 型连接器为基础,由NTT 研制开发出来的世界上最小的单芯光纤连接器,。该连接器采用 1.25mm 直径的套管和自保持机构,其优势在于能实现高密度安装。利用 MU 的 l.25mm 直径的套管,NTT 已经开发了 MU 连接器系列。它们有用于光缆连接的插座型连接器(MU-A 系列);具有自保持机构的底板连接器(MU-B 系列)以及用于连接 LDPD 模块与插头的简化插座(MU-SR 系列)等。随着光纤网络向更大带宽更大容量方向的迅
7、速发展和 DWDM 技术的广泛应用,对 MU 型连接器的需求也将迅速增长。光纤收发器是一种将短距离的双绞线电信号和长距离的光信号进行互换的以太网传输媒体转换单元,在很多地方也被称之为光电转换器。产品一般应用在以太网电缆无法覆盖、必须使用光纤来延长传输距离的实际网络环境中,且通常定位于宽带城域网的接入层应用。在传统的以太网中起连接作用的介质主要是双绞线。双绞线传输距离的极限大约为 200 米左右,如此短的传输距离制约了网络的发展,同时双绞线受电磁干扰的影响较大,这也无疑使数据通讯质量受到较大的影响。光纤收发器的运用,将以太网中的连接介质换为光纤。光纤的低损耗、高抗电磁干扰性,在使网络传输距离从
8、200 米扩展到 2 公里甚至几十公里,乃至于上百公里的同时,也使数据通讯质量有了较大提高。他使服务器、中继器、集线器、终端机与终端机之间的互联更加简捷。 在实际的应用中,光纤收发器主要有下面三种基本连接方式:一、环形骨干网 环形骨干网是利用 SPANNING TREE 特性构建城域范围内的骨干,这种结构可以变形为网状结构,适合于城域网上高密度的中心小区,形成容错的核心骨干网络。环形骨干网对IEEE.1Q 及 ISL 网络特性的支持,可以保证兼容于绝大多数主流的骨干网络,如跨交换机的 VLAN、TRUNK 等功能。环形骨干网可为金融、政府、教育等行业组建宽带虚拟专网。二、链形骨干网 链形骨干网
9、利用链形的联接可以节省大量的骨干光线数量,适合于在城市的边缘及所属郊县地区构造高带宽低价位的骨干网络,该模式同时可用于高速公路、输油、输电线路等环境。链形骨干网对 IEEE802.1Q 及 ISL 网络特性的支持,可以保证兼容于绝大多数的骨干网络,可为金融、政府、教育等行业组建宽带虚拟专网。链形骨干网是可以提供图像、语音、数据及实时监控综合传输的多媒体网络。 三、用户接入系统 户接入系统利用 10Mbps/100Mbps 自适应及 Mbps/100Mbps 自动转换功能,可以联接任意的用户端设备,无需准备多种光纤收发器,可为网络提供平滑的升级方案。同时利用半双工/全双工自适应及半双工 /全双工
10、自动转换功能,可以在用户端配置廉价的半双工HUB,几十倍的降低用户端的组网成本,提高网络运营商的竞争力。同时,设备内置的交换核心提高接入设备的传输效率,减少网络广播、控制流量、检测传输故障。 (5)光电转换器常见问题分析网络物理安全辨误 影响网络链路传输的多种因素 一条计算机网络的数据链路可以承载各种各样的数据应用,不同的应用对数据链路传输质量的要求是有区别的。如果一条双绞线链路的工作环境存在大量高强度的电磁干扰和噪声,那么会有什么现象出现呢?这条链路上的用户可能会抱怨网络速度很慢,严重时甚至根本就不能上网。有经验的工程师都知道,多数情况下,这种类似噪声的干扰信号并不是来自链路之外,而是来自于
11、链路本身比如近端串扰 NEXT。 在网络链路的传输品质要求中,对双绞线和光纤的传输误码率都有具体的数量规定。对于双绞线,如果电缆超长,则信号在整个的传输过程中衰减会过大,网卡或交换机端口收到的信号能量(或信号幅度 )就会偏小,电缆中的热噪声和外界环境中的电磁辐射干扰就很容易导致信噪比减小,链路中的信号传输误码率增加,链路传输性能下降,数据包错误率和丢包率均会上升。而且,不同用户对应的故障现象虽然相似,但程度会有区别。一般会感到尽管链路流量不高,但速度却很慢。同样,如果光缆过长或是因为其他原因(比如接插头质量原因)导致衰减过大,则也会使传输的数据包出错,用户反映速度问题的抱怨会随之增加。 以上只
12、是导致链路误码率增加的最基本的原因之一,而影响电缆和光缆传输性能下降和误码率增加的原因是多种多样的,远不止衰减和外来电磁波的干扰这几项。以双绞线为例,除了电缆本身的热噪声和外界辐射进入的电磁噪声外,还有来自电缆链路本身的诸多影响因素要知道,衡量一条六类链路是否合格,其认证测试验收报告上载明的测试结果就有 20 个之多。 首先,我们经常需要考虑的就是线间串扰问题。双绞线电缆由多对双绞线缠绕包覆在一根软塑料管中构成,工作时每对双绞线传输的信号会感应到相邻的双绞线对上。不过,由于采取了双绞结构等去除感应的措施,线间串扰在电缆中不会很大。但在接插模块处就不一样了,接插模块处一般不是双绞结构,比如水晶头
13、中的导电金属片就是平行排列的,所以此处的线对间信号感应是很大的,此处同时也是外界电磁干扰信号的一个重要侵入口。屏蔽线可以减少外界电磁干扰(EMI),双重屏蔽双绞线还能屏蔽线对间的感应,对网络物理链路的信息传输安全有较好保证作用。不过,这种电缆在接插模块处仍然是一个防护弱点,对于克服线间串扰(通常就用近端串扰这个参数来描述)的影响贡献不明显。 另外一个影响因素就是链路的阻抗连续性问题。纯电缆段中的阻抗连续性尚可,但在接插模块处连续性一般都很差,信号能量在阻抗不连续处会发生反射,导致有用信号的衰减增大。反射的信号能量一方面会回到发信端,并被位于发信端的并行的接收端口作为(干扰)信号接收;另一方面,
14、反射信号还会再次通过线间感应机制干扰其它线对信号的正常传输。有时反射的信号甚至会在短链路中多次反射从而造成多个方向和多条线对的信号传输质量恶化。现场认证测试标准(比如 TIA568B)中经常会用回波损耗(RL)和衰减这两项来间接地衡量阻抗连续性的性能。 光纤链路的介质连续性是影响信号传输的又一个重要因素。在光纤链路中人们通常会非常重视光纤的长度和衰减值是否符合要求,这是非常重要的考核参数。但常被忽视的介质连续性差(比如接插头质量差或数量过多) 的问题却会给网络维护人员带来意想不到的麻烦。在某种条件下,介质连续性差的链路会形成较强的信号多次强反射,从而破坏原光纤的光脉冲信号的波形,这相当于减少了
15、光纤链路的传输信噪比,使数据传输误码率上升,从而导致传输的数据包出错。 当然,采用光纤链路通常都能将电缆链路在长度上应用的局限性得到很大改善,局域网中经常在以太网电缆距离不足时使用光模块或光电转换器延伸服务距离,使用的数量增加很快。此外,采用光纤链路的另一个最大好处就是物理安全性得以提高。上面这个图是 LC 到 LC 的,LC 就是路由器常用的 SFP,mini GBIC 所插的线头。FC 转 SC,FC 一端插光纤步线架, SC 一端就是 catalyst 也好,其他也好上面的 GBIC 所插线缆。ST 到 FC,对于 10Base-F 连接来说,连接器通常是 ST 类型,另一端 FC 连的是光纤步线架。Sc 到 Sc 两头都是 GBIC 的。SC 到 LC,一头 GBIC,另一头 MINI-GBIC。