1、毕业设计(论文)外文资料翻译学 院: 自动化工程学院 专 业:自动化测控技术与仪器姓 名: 学 号: 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语:签名: 年 月 日附件 1:外文资料翻译译文改进型智能机器人的语音识别方法2、语音识别概述最近,由于其重大的理论意义和实用价值,语音识别已经受到越来越多的关注。到现在为止,多数的语音识别是基于传统的线性系统理论,例如隐马尔可夫模型和动态时间规整技术。随着语音识别的深度研究,研究者发现,语音信号是一个复杂的非线性过程,如果语音识别研究想要获得突破,那么就必须引进非线性系统理论方法。最近,随着非线性系统理论的发展,如人工神经网络,混沌与
2、分形,可能应用这些理论到语音识别中。因此,本文的研究是在神经网络和混沌与分形理论的基础上介绍了语音识别的过程。语音识别可以划分为独立发声式和非独立发声式两种。非独立发声式是指发音模式是由单个人来进行训练,其对训练人命令的识别速度很快,但它对与其他人的指令识别速度很慢,或者不能识别。独立发声式是指其发音模式是由不同年龄,不同性别,不同地域的人来进行训练,它能识别一个群体的指令。一般地,由于用户不需要操作训练,独立发声式系统得到了更广泛的应用。 所以,在独立发声式系统中,从语音信号中提取语音特征是语音识别系统的一个基本问题。语音识别包括训练和识别,我们可以把它看做一种模式化的识别任务。通常地,语音
3、信号可以看作为一段通过隐马尔可夫模型来表征的时间序列。通过这些特征提取,语音信号被转化为特征向量并把它作为一种意见,在训练程序中,这些意见将反馈到 HMM 的模型参数估计中。这些参数包括意见和他们响应状态所对应的概率密度函数,状态间的转移概率,等等。经过参数估计以后,这个已训练模式就可以应用到识别任务当中。输入信号将会被确认为造成词,其精确度是可以评估的。整个过程如图一所示。图 1 语音识别系统的模块图3、理论与方法从语音信号中进行独立扬声器的特征提取是语音识别系统中的一个基本问题。解决这个问题的最流行方法是应用线性预测倒谱系数和 Mel 频 率 倒 谱 系 数 。 这 两种 方 法 都 是
4、基 于 一 种 假 设 的 线 形 程 序 , 该 假 设 认 为 说 话 者 所 拥 有 的 语 音 特 性 是由 于 声道共振造成的。这些信号特征构成了语音信号最基本的光谱结构。然而,在语音信号中,这些非线形信息不容易被当前的特征提取逻辑方法所提取,所以我们使用分型维数来测量非线形语音扰动。本文利用传统的 LPCC 和非线性多尺度分形维数特征提取研究并实现语音识别系统。3.1 线性预测倒谱系数线性预测系数是一个我们在做语音的线形预分析时得到的参数,它是关于毗邻语音样本间特征联系的参数。线形预分析正式基于以下几个概念建立起来的,即一个语音样本可以通过一些以前的样本的线形组合来快速地估计,根据
5、真实语音样本在确切的分析框架(短时间内的)和预测样本之间的差别的最小平方原则,最后会确认出唯一的一组预测系数。LPC 可以用来估计语音信号的倒谱。在语音信号的短时倒谱分析中,这是一种特殊的处理方法。信道模型的系统函数可以通过如下的线形预分析来得到:其中 p 代表线形预测命令, , (k=1,2, ,p)代表预测参数,脉冲响应用 h(n)来表示,假设 h(n)的倒谱是 。那么(1)式可以扩展为(2)式:将 ( 1) 带 入 ( 2) , 两 边 同 时 , ( 2) 变 成 ( 3) 。就 获 得 了 方 程 ( 4) :那 么 可 以 通 过 来 获 得 。( 5) 中 计 算 的 倒谱系数叫
6、做 LPCC,n 代表 LPCC 命令。在我们采集 LPCC 参数以前,我们应该对语音信号进行预加重,帧处理,加工和终端窗口检测等,所以,中文命令字“前进”的端点检测如图 2 所示,接下来,断点检测后的中文命令字“前进”语音波形和 LPCC 的参数波形如图 3 所示。图 2 中文命令字“前进”的端点检测图 3 断点检测后的中文命令字“前进”语音波形和 LPCC 的参数波形3.2 语音分形维数计算分形维数是一个与分形的规模与数量相关的定值,也是对自我的结构相似性的测量。分形分维测量是6-7。从测量的角度来看,分形维数从整数扩展到了分数,打破了一般集拓扑学方面被整数分形维数的限制,分数大多是在欧几
7、里得几何尺寸的延伸。有许多关于分形维数的定义,例如相似维度,豪斯多夫维度,信息维度,相关维度,容积维度,计盒维度等等,其中,豪斯多夫维度是最古老同时也是最重要的,它的定义如【3】所示:其中, 表示需要多少个单位 来覆盖子集 F. 端点检测后,中文命令词“向前”的语音波形和分形维数波形如图 4 所示。图 4 端点检测后,中文命令词“向前”的语音波形和分形维数波形3.3 改进的特征提取方法考虑到 LPCC 语音信号和分形维数在表达上各自的优点,我们把它们二者混合到信号的特取中,即分形维数表表征语音时间波形图的自相似性,周期性,随机性,同时,LPCC 特性在高语音质量和高识别速度上做得很好。由于人工
8、神经网络的非线性,自适应性,强大的自学能力这些明显的优点,它的优良分类和输入输出响应能力都使它非常适合解决语音识别问题。由于人工神经网络的输入码的数量是固定的,因此,现在是进行正规化的特征参数输入到前神经网络9,在我们的实验中,LPCC 和每个样本的分形维数需要分别地通过时间规整化的网络,LPCC 是一个 4 帧数据(LPCC1,LPCC2,LPCC3,LPCC4,每个参数都是 14 维的) ,分形维数被模范化为 12 维数据, (FD1,FD2,FD12,每一个参数都是一维) ,以便于每个样本的特征向量有4*14+12*1=68-D 维,该命令就是前 56 个维数是 LPCC,剩下的 12
9、个维数是分形维数。因而,这样的一个特征向量可以表征语音信号的线形和非线性特征。自动语音识别的结构和特征自动语音识别是一项尖端技术,它允许一台计算机,甚至是一台手持掌上电脑(迈尔斯,2000)来识别那些需要朗读或者任何录音设备发音的词汇。自动语音识别技术的最终目的是让那些不论词汇量,背景噪音,说话者变音的人直白地说出的单词能够达到 100%的准确率(CSLU,2002) 。然而,大多数的自动语音识别工程师都承认这样一个现状,即对于一个大的语音词汇单位,当前的准确度水平仍然低于 90%。举一个例子,Dragons Naturally Speaking 或者 IBM 公司,阐述了取决于口音,背景噪音
10、,说话方式的基线识别的准确性仅仅为 60%至80%(Ehsani Eskenazi, 1999; Hinks, 2003)。早期的基于自动语音识别的软件程序采用基于模板的识别系统,其使用动态规划执行模式匹配或其他时间规范化技术(Dalby among the best are Jurafsky low likelihood represents poor pronunciation (Larocca, et al., 1991). While ASR has been commonly used for such purposes as business dictation and speci
11、al needs accessibility, its market presence for language learning has increased dramatically in recent years (Aist, 1999; Eskenazi, 1999; Hinks, 2003). Early ASR-based software programs adopted template-based recognition systems which perform pattern matching using dynamic programming or other time
12、normalization techniques (Dalby & Kewley-Port, 1999). These programs include Talk to Me (Auralog, 1995), the Tell Me More Series (Auralog, 2000), Triple-Play Plus (Mackey & Choi, 1998), New Dynamic English (DynEd, 1997), English Discoveries (Edusoft, 1998), and See it, Hear It, SAY IT! (CPI, 1997).
13、Most of these programs do not provide any feedback on pronunciation accuracy beyond simply indicating which written dialogue choice the user has made, based on the closest pattern match. Learners are not told the accuracy of their pronunciation. In particular, Neri, et al. (2002) criticizes the grap
14、hical wave forms presented in products such as Talk to Me and Tell Me More because they look flashy to buyers, but do not give meaningful feedback to users. The 2000 version of Talk to Me has incorporated more of the features that Hinks (2003), for example, believes are useful to learners: A visual signal allows learners to compare their intonation to that of the model speaker. The learners pronunciation accuracy is scored on a scale of seven (the higher the better).Words whose pronunciation fails to be recognized are highlighted