收藏 分享(赏)

高台县高中2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8968533 上传时间:2019-07-18 格式:DOC 页数:17 大小:762.50KB
下载 相关 举报
高台县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
高台县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
高台县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
高台县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
高台县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页高台县高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A) 8( B ) 4(C) 3(D) 42 在正方体 ABCDABCD中,点 P 在线段 AD上运动,则异面直线 CP 与 BA所成的角 的取值范围是( )A0 B0 C0 D03 已知双曲线 的右焦点为 F,若过点 F 且倾斜角为 60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )精选高中模拟试卷第 2 页,共 17 页A(1,2

2、 B(1,2) C2,+) D(2,+ )4 抛物线 y= x2 的焦点坐标为( )A(0, ) B( , 0) C(0,4) D(0,2)5 定义新运算:当 ab 时, ab=a;当 ab 时,ab=b 2,则函数 f(x)= (1 x)x (2 x),x 2,2的最大值等于( )A1 B1 C6 D126 已知 a,b 都是实数,那么“a 2b 2”是“ab”的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件7 设数集 M=x|mxm+ ,N=x|n xn,P=x|0x1,且 M,N 都是集合 P 的子集,如果把 ba叫做集合x|a xb的“长度”,那么集

3、合 MN 的“长度”的最小值是( )A B C D8 已知 a= ,b=2 0.5,c=0.5 0.2,则 a,b,c 三者的大小关系是( )Abca Bba c Ca bc Dcba9 已知 f(x)是定义在 R 上的奇函数,且 f(x2)=f(x+2),当 0x2 时,f(x)=1log 2(x+1),则当 0x4 时,不等式(x2 )f(x)0 的解集是( )A(0,1)(2,3) B(0,1)(3,4) C(1,2)(3,4) D(1,2) (2,3)10在定义域内既是奇函数又是减函数的是( )Ay= By= x+Cy= x|x| Dy=11设集合 ,集合 ,若 ,则的取值范围3|01

4、x2|20BxaxAB( )A B C. D1aa12a精选高中模拟试卷第 3 页,共 17 页12已知实数 满足不等式组 ,若目标函数 取得最大值时有唯一的最优解 ,yx,5342yxmxyz)3,1(则实数 的取值范围是( )mA B C D110m11【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.二、填空题13设 x,y 满足的约束条件 ,则 z=x+2y 的最大值为 14若全集 ,集合 ,则 。15函数 f(x)=x 33x+1 在闭区间 3,0上的最大值、最小值分别是 16 设函数

5、 , 有下列四个命题:()xe()lngxm若对任意 ,关于 的不等式 恒成立,则 ;1,2()fgxme若存在 ,使得不等式 成立,则 ;0 002ln若对任意 及任意 ,不等式 恒成立,则 ;1,x21,x1)(f ln2若对任意 ,存在 ,使得不等式 成立,则 2)xge其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17用 1,2,3,4,5 组成不含重复数字的五位数,要求数字 4 不出现在首位和末位,数字 1,3,5 中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请

6、用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.18【盐城中学 2018 届高三上第一次阶段性考试】已知函数 有两个极值点,则实数lnfxax的取值范围是a三、解答题19已知 p:x 2+2xm0 对 xR 恒成立;q:x 2+mx+1=0 有两个正根若 pq 为假命题,pq 为真命题,求m 的取值范围精选高中模拟试卷第 4 页,共 17 页20(本小题满分 12 分)如图长方体 ABCDA 1B1C1D1 中,AB16,BC10,AA 1 8,点 E,F 分别在 A1B1,D 1C1 上,A 1E4,D 1F8,过点 E,F,C

7、 的平面 与长方体的面相交,交线围成一个四边形(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面 将长方体分成的两部分体积之比21(本小题满分 13 分)设 ,数列 满足: , 1()fxna121(),nnafN()若 为方程 的两个不相等的实根,证明:数列 为等比数列;12,()fx 12na()证明:存在实数 ,使得对 , mN21nm)精选高中模拟试卷第 5 页,共 17 页22在直角坐标系 xOy 中,曲线 C1 的参数方程为 C1: 为参数),曲线 C2: =1()在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,求 C1,C 2 的极坐标方程;()射线 = (0)与

8、 C1 的异于极点的交点为 A,与 C2 的交点为 B,求|AB|23(本小题满分 10 分)选修 4-5:不等式选讲已知函数 ()|21|fx(1)若不等式 的解集为 ,求实数 的值;)(0)m,2,m(2)若不等式 ,对任意的实数 恒成立,求实数 的最小值(|23|yafxxyRa24在极坐标系中,圆 C 的极坐标方程为: 2=4(cos +sin) 6若以极点 O 为原点,极轴所在直线为 x轴建立平面直角坐标系精选高中模拟试卷第 6 页,共 17 页()求圆 C 的参数方程;()在直角坐标系中,点 P(x,y)是圆 C 上动点,试求 x+y 的最大值,并求出此时点 P 的直角坐标精选高中

9、模拟试卷第 7 页,共 17 页高台县高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】 根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于 1232382 【答案】D【解析】解:A 1BD 1C,CP 与 A1B 成角可化为 CP 与 D1C 成角AD 1C 是正三角形可知当 P 与 A 重合时成角为 ,P 不能与 D1 重合因为此时 D1C 与 A1B 平行而不是异面直线,0 故选:D3 【答案】C【解析】解:已知双曲线 的右焦点为 F,若过点 F 且倾斜角为 60的直线与双曲线的右支有且只有一个交点,则该直线的斜率

10、的绝对值小于等于渐近线的斜率 , ,离心率 e2= ,e2,故选 C【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件4 【答案】D精选高中模拟试卷第 8 页,共 17 页【解析】解:把抛物线 y= x2 方程化为标准形式为 x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键5 【答案】C【解析】解:由题意知当2 x1 时,f(x)=x2,当 1x2 时,f(x)=x 32,又 f(x )=x2,f(x)=x 32 在定义域上都为增函数,f(x)的最大值为 f(2)=2 32=6故选 C6 【答案】D【解析】解

11、:“a 2b 2”既不能推出“ab”;反之,由“ab”也不能推出“a 2b 2”“a2b 2”是“ab”的既不充分也不必要条件故选 D7 【答案】C【解析】解:集 M=x|mxm+ ,N=x|n xn,P=x|0x1,且 M,N 都是集合 P 的子集,根据题意,M 的长度为 ,N 的长度为 ,当集合 MN 的长度的最小值时,M 与 N 应分别在区间0,1的左右两端,故 MN 的长度的最小值是 = 故选:C8 【答案】A【解析】解:a=0.5 0.5,c=0.5 0.2,0 ac1,b=2 0.51,b ca,故选:A精选高中模拟试卷第 9 页,共 17 页9 【答案】D【解析】解:f(x)是定

12、义在 R 上的奇函数,且 f(x2)=f(x+2),f(0)=0 ,且 f(2+x)= f( 2x),f(x)的图象关于点(2, 0)中心对称,又 0x2 时,f(x)=1 log2(x+1),故可作出 fx(x)在 0x4 时的图象,由图象可知当 x(1,2)时, x20,f (x)0,(x2 )f (x)0;当 x(2,3)时,x20,f (x)0,(x2 )f (x)0;不等式(x2 )f(x)0 的解集是(1,2)(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题10【答案】C【解析】解:A. 在定义域内没有单调性, 该选项错误;B. 时,y= ,x=1 时

13、,y=0;该函数在定义域内不是减函数,该选项错误;Cy= x|x|的定义域为 R,且 (x)| x|=x|x|=( x|x|);该函数为奇函数;精选高中模拟试卷第 10 页,共 17 页该函数在0,+),(,0)上都是减函数,且0 2=02;该函数在定义域 R 上为减函数, 该选项正确;D. ;0+1 01;该函数在定义域 R 上不是减函数, 该选项错误故选:C【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性11【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及

14、到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.12【答案】C【解析】画出可行域如图所示, ,要使目标函数 取得最大值时有唯一的最优解 ,则需)3,1(Amxyz)3,1(直线 过点 时截距最大,即 最大,此时 即可.lAzlk精选高中模拟试卷第 11 页,共 17 页二、填空题13【答案】 7 【解析】解:作出不等式对应的平面区域,由 z=x+2y,得 y= ,平移直线 y= ,由图象可知当直线 y= 经过点 B 时,直线

15、 y= 的截距最大,此时 z 最大由 ,得 ,即 B(3,2),此时 z 的最大值为 z=1+23=1+6=7,故答案为:7【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法14【答案】 |0 1 【解析】 , |0 1。精选高中模拟试卷第 12 页,共 17 页15【答案】 3,17 【解析】解:由 f(x)=3x 23=0,得 x=1,当 x1 时,f (x)0,当1 x 1 时, f(x)0,当 x1 时,f ( x)0,故 f(x)的极小值、极大值分别为 f( 1)=3 ,f(1)=1,而 f( 3)=17,f(0)=1,故函数 f(x)=x 33x+1 在3

16、, 0上的最大值、最小值分别是 3、1716【答案】【解析】17【答案】48【解析】精选高中模拟试卷第 13 页,共 17 页18【答案】 .【解析】由题意,y=lnx +12mx令 f(x)=lnx2mx +1=0 得 lnx=2mx1,函数 有两个极值点,等价于 f(x )=ln x2mx+1 有两个零点,lnm等价于函数 y=lnx 与 y=2mx1 的图象有两个交点,当 m= 时,直线 y=2mx1 与 y=lnx 的图象相切,12由图可知,当 0m 时,y =lnx 与 y=2mx1 的图象有两个交点,则实数 m 的取值范围是(0, ),2故答案为:(0, ).1三、解答题19【答案

17、】 【解析】解:若 p 为真,则=4 4m0,即 m1 精选高中模拟试卷第 14 页,共 17 页若 q 为真,则 ,即 m2 pq 为假命题,p q 为真命题,则 p,q 一真一假若 p 真 q 假,则 ,解得:m 1 若 p 假 q 真,则 ,解得:m 2 综上所述:m2,或 m1 20【答案】【解析】解:(1)交线围成的四边形 EFCG(如图所示)(2)平面 A1B1C1D1平面 ABCD,平面 A1B1C1D1EF ,平面 ABCDGC,EFGC,同理 EGFC.四边形 EFCG 为平行四边形,过 E 作 EMD 1F,垂足为 M,EMBC10,A1E4,D 1F8,MF4.GCEF

18、,EM2 MF2 102 42 116GB 4(事实上 RtEFMRtCGB)GC2 BC2 116 100过 C1 作 C1HFE 交 EB1 于 H,连接 GH,则四边形 EHC1F 为平行四边形,由题意知,B1HEB 1EH1284 GB.平面 将长方体分成的右边部分由三棱柱 EHG-FC1C 与三棱柱 HB1C1GBC 两部分组成其体积为 V2V 三棱柱 EHG-FC1CV 三棱柱 HB1C1GBCSFC 1CB1C1S GBCBB1精选高中模拟试卷第 15 页,共 17 页 8810 4108 480,1212平面 将长方体分成的左边部分的体积 V1V 长方体 V 216108480

19、800. ,V1V2800480 53其体积比为 ( 也可以)533521【答案】 【解析】解:证明: , , 2()10fxx21021 , (3 分)121 111122 222nnnnnaaaa, ,120a12数列 为等比数列 (4 分)n()证明:设 ,则 512m()fm由 及 得 , , 12a1nna35a130am 在 上递减, , ,(8 分)()fx0,)13()()fff241342ama下面用数学归纳法证明:当 时, N212nn当 时,命题成立 (9 分)假设当 时命题成立,即 ,那么nk212kkkkaa由 在 上递减得()fx0,)2122()()()()kff

20、fmffa 22231kkkam由 得 , ,312321kfff242kk当 时命题也成立, (12 分)n由知,对一切 命题成立,即存在实数 ,使得对 , .nNnN122nnama22【答案】 精选高中模拟试卷第 16 页,共 17 页【解析】解:()曲线 为参数)可化为普通方程:(x1) 2+y2=1,由 可得曲线 C1 的极坐标方程为 =2cos,曲线 C2 的极坐标方程为 2(1+sin 2)=2()射线 与曲线 C1 的交点 A 的极径为 ,射线 与曲线 C2 的交点 B 的极径满足 ,解得 ,所以 23【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力24【答案】 【解析】(本小题满分 10 分)选修 44:坐标系与参数方程精选高中模拟试卷第 17 页,共 17 页解:()因为 2=4(cos +sin)6,所以 x2+y2=4x+4y6,所以 x2+y24x4y+6=0,即(x2 ) 2+(y2) 2=2 为圆 C 的普通方程所以所求的圆 C 的参数方程为 ( 为参数)()由()可得, 当 时,即点 P 的直角坐标为(3,3)时,x+y 取到最大值为 6

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报