1、精选高中模拟试卷第 1 页,共 15 页和龙市高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 单位正方体(棱长为 1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A该几何体体积为 B该几何体体积可能为C该几何体表面积应为 + D该几何体唯一2 在复平面内,复数(4+5i)i(i 为虚数单位)的共轭复数对应的点位于( )A第一象限 B第二象限 C第三象限 D第四象限3 若直线 与曲线 : 没有公共点,则实数 的最大值为( ):1lykx1()exfxkA1 B C1 D23【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查
2、逻辑思维能力、等价转化能力、运算求解能力4 设偶函数 f(x)满足 f(x)=2 x4(x0),则x|f(x2)0= ( )Ax|x2 或 x4 Bx|x0 或 x4 Cx|x0 或 x6 Dx|0x45 (m+1)x 2(m1)x+3(m 1)0 对一切实数 x 恒成立,则实数 m 的取值范围是( )A(1,+) B( ,1)C D6 已知奇函数 是 上的增函数,且 ,则 的取值范围是( )()fx1,1(3)(0ftftftA、 B、 C、 D、13tt243tt62137 等比数列a n中,a 3,a 9 是方程 3x211x+9=0 的两个根,则 a6=( )精选高中模拟试卷第 2 页
3、,共 15 页A3 B C D以上皆非8 已知 2a=3b=m,ab0 且 a,ab ,b 成等差数列,则 m=( )A B C D69 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B483C. D16320310已知实数 a,b,c 满足不等式 0a bc1,且M=2a, N=5b ,P= ( ) c,则 M、N、P 的大小关系为( )AMNP BPMN CNPM11已知函数 f(x)是定义在 R 上的奇函数,当 x0 时, .若,f(x-1)f(x),则实数 a 的取值范围为A B C D 12在ABC 中,角 A,B,C 所对的边分别是 a,b,c,
4、若 +1=0,则角 B 的度数是( )A60 B120 C150 D60 或 120精选高中模拟试卷第 3 页,共 15 页二、填空题13曲线 y=x+ex 在点 A(0,1)处的切线方程是 14如图,在长方体 ABCDA1B1C1D1 中,AB=AD=3cm, AA1=2cm,则四棱锥 ABB1D1D 的体积为 cm315已知函数 的三个零点成等比数列,则 .5()sin(0)2fxax2loga16设幂函数 k的图象经过点 4,,则 k= 17已知 z 是复数,且|z|=1,则|z3+4i| 的最大值为 18甲、乙、丙三位同学被问到是否去过 A,B,C 三个城市时,甲说:我去过的城市比乙多
5、,但没去过 B 城市;乙说:我没去过 C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 三、解答题19为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有 a 人在排队等候购票开始售票后,排队的人数平均每分钟增加 b 人假设每个窗口的售票速度为 c 人/min ,且当开放 2 个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放 3 个窗口,则 15min 后恰好不会出现排队现象若要求售票 10min 后不会出现排队现象,则至少需要同时开几个窗口?精选高中模拟试卷第 4 页,共 15 页20在平面直角坐标系 xOy 中,圆 C:x
6、 2+y2=4,A( ,0),A 1( ,0),点 P 为平面内一动点,以PA 为直径的圆与圆 C 相切()求证:|PA 1|+|PA|为定值,并求出点 P 的轨迹方程 C1;()若直线 PA 与曲线 C1 的另一交点为 Q,求 POQ 面积的最大值21已知过点 P(0,2)的直线 l 与抛物线 C:y 2=4x 交于 A、B 两点,O 为坐标原点(1)若以 AB 为直径的圆经过原点 O,求直线 l 的方程;(2)若线段 AB 的中垂线交 x 轴于点 Q,求 POQ 面积的取值范围22解关于 x 的不等式 12x2axa 2(aR)23设函数 f(x)=1+ (1+a)xx 2x 3,其中 a
7、0()讨论 f(x)在其定义域上的单调性;()当 x时,求 f(x)取得最大值和最小值时的 x 的值精选高中模拟试卷第 5 页,共 15 页24函数 f(x)是 R 上的奇函数,且当 x0 时,函数的解析式为 f(x)= 1(1)用定义证明 f(x)在( 0,+ )上是减函数;(2)求函数 f(x)的解析式精选高中模拟试卷第 6 页,共 15 页和龙市高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为 1 的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为 1该几何体
8、的表面积由三个正方形,有三个两直角边为 1 的等腰直角三角形和一个边长为 的正三角形组成故其表面积 S=3(1 1)+3( 11)+ ( ) 2= 故选:C【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键2 【答案】B【解析】解:(4+5i )i=5 4i,复数( 4+5i) i 的共轭复数为: 5+4i,在复平面内,复数(4+5i )i 的共轭复数对应的点的坐标为:( 5,4),位于第二象限故选:B3 【答案】C【解析】令 ,则直线 : 与曲线 : 没有公共点,11exgxfkxkl1ykxCyfx等价于方程 在 上没有实数解假设 ,此时
9、 , 又函0R0g10ekg数 的图象连续不断,由零点存在定理,可知 在 上至少有一解,与“方程 在 上gx xRgxR没有实数解”矛盾,故 又 时, ,知方程 在 上没有实数解,所以 的最1k1egx大值为 ,故选 C14 【答案】D【解析】解:偶函数 f(x) =2x4(x0),故它的图象关于 y 轴对称,且图象经过点(2,0)、(0,3),(2,0),故 f(x2)的图象是把 f(x)的图象向右平移 2 个单位得到的,精选高中模拟试卷第 7 页,共 15 页故 f(x2)的图象经过点( 0,0)、(2,3),(4,0),则由 f(x2)0,可得 0 x4,故选:D【点评】本题主要考查指数
10、不等式的解法,函数的图象的平移规律,属于中档题5 【答案】C【解析】解:不等式(m+1 ) x2(m1)x+3(m 1)0 对一切 xR 恒成立,即(m+1)x 2(m1)x+3(m 1)0 对一切 xR 恒成立若 m+1=0,显然不成立若 m+10,则 解得 a 故选 C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于 0 只需 6 【答案】A【解析】精选高中模拟试卷第 8 页,共 15 页考点:函数的性质。7 【答案】C【解析】解:a 3,a 9 是方程 3x211x+9=0 的两个根,a 3a9=3,又数列a n是等比数列,则 a62=a3a9=3,即 a6= 故选 C8 【
11、答案】C【解析】解:2 a=3b=m,a=log 2m,b=log 3m,a,ab,b 成等差数列,2ab=a+b,ab0, + =2, =logm2, =logm3,log m2+logm3=logm6=2,解得 m= 故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用9 【答案】精选高中模拟试卷第 9 页,共 15 页【解析】选 D.根据三视图可知,该几何体是一个棱长为 2 的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积 V2 3 221 ,故选 D.1320310【答案】A【解析】解:0abc 1,12 a2, 5 b 1, (
12、) c1,5b =( ) b( ) c( ) c,即 MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键11【答案】 B【解析】当 x0 时,f(x)= ,由 f(x )=x3a 2,x 2a 2,得 f(x )a 2;当 a2x2a 2时,f (x)=a 2;由 f(x )=x ,0xa 2,得 f(x )a 2。当 x0 时, 。函数 f(x)为奇函数,当 x0 时, 。对 xR,都有 f(x1 )f(x),2a2(4a 2)1,解得: 。故实数 a 的取值范围是 。12【答案】A【解析】解:根据正弦定理有: = ,代入已知等式得: +
13、1=0,精选高中模拟试卷第 10 页,共 15 页即 1= ,整理得:2sinAcosB cosBsinC=sinBcosC,即 2sinAcosB=sinBcosC+cosBsinC=sin(B+C ),又A+B+C=180 ,sin(B+C)=sinA ,可得 2sinAcosB=sinA,sinA 0,2cosB=1,即 cosB= ,则 B=60故选:A【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键二、填空题13【答案】 2xy+1=0 【解析】解:由题意得,y=(x+e x)=1+e x,点 A(0,1)处的切线斜率 k=1+e0=2,则点 A(0,1)
14、处的切线方程是 y1=2x,即 2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题14【答案】 6 【解析】解:过 A 作 AOBD 于 O,AO 是棱锥的高,所以 AO= = ,所以四棱锥 ABB1D1D 的体积为 V= =6故答案为:615【答案】 2精选高中模拟试卷第 11 页,共 15 页考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思
15、想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题16【答案】32【解析】试题分析:由题意得11,42k32k考点:幂函数定义17【答案】 6 【解析】解:|z|=1 ,|z3+4i|=|z(34i)| |z|+|34i|=1+ =1+5=6,|z 3+4i|的最大值为 6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题18【答案】 A 【解析】解:由乙说:我没去过 C 城市,则乙可能去过 A 城市或 B 城市,但甲说:我去过的城市比乙多,但没去过 B 城市,则乙只能是去过 A,B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为 A
16、故答案为:A精选高中模拟试卷第 12 页,共 15 页【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题三、解答题19【答案】 【解析】解:设至少需要同时开 x 个窗口,则根据题意有, 由得,c=2b,a=75b,代入得,75b+10b20bx,x ,即至少同时开 5 个窗口才能满足要求20【答案】 【解析】()证明:设点 P(x,y),记线段 PA 的中点为 M,则两圆的圆心距 d=|OM|= |PA1|=R |PA|,所以,|PA 1|+|PA|=42 ,故点 P 的轨迹是以 A,A 1 为焦点,以 4 为长轴的椭圆,所以,点 P 的轨迹方程 C1 为: =1 ()解:
17、设 P(x 1,y 1),Q(x 2,y 2),直线 PQ 的方程为:x=my+ ,代入 =1 消去 x,整理得:(m 2+4)y 2+2 my1=0,则 y1+y2= ,y 1y2= ,POQ 面积 S= |OA|y1y2|=2 令 t= (0 ,则 S=2 1(当且仅当 t= 时取等号)所以,POQ 面积的最大值 1 21【答案】 【解析】解:(1)设直线 AB 的方程为 y=kx+2(k0),设 A(x 1,y 1),B(x 2,y 2),精选高中模拟试卷第 13 页,共 15 页由 ,得 k2x2+(4k 4)x+4=0,则由=(4k 4) 216k2=32k+160,得 k ,= ,
18、 ,所以 y1y2=(kx 1+2)(kx 2+2)=k 2x1x2+2k(x 1+x2)+4= ,因为以 AB 为直径的圆经过原点 O,所以AOB=90,即 ,所以 ,解得 k= ,即所求直线 l 的方程为 y= (2)设线段 AB 的中点坐标为(x 0,y 0),则由(1)得 , ,所以线段 AB 的中垂线方程为 ,令 y=0,得 = = ,又由(1)知 k ,且 k0,得 或 ,所以 ,所以 = ,所以POQ 面积的取值范围为(2,+)【点评】本题考查直线 l 的方程的求法和求 POQ 面积的取值范围考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识考查运算求解能力,推理
19、论证能力;考查函数与方程思想,化归与转化思想22【答案】 【解析】解:由 12x2axa20(4x+a)(3x a)0( x+ )(x )0,精选高中模拟试卷第 14 页,共 15 页a0 时, ,解集为x|x 或 x ;a=0 时,x 20,解集为x|xR 且 x0;a0 时, ,解集为x|x 或 x 综上,当 a0 时, ,解集为x|x 或 x ;当 a=0 时,x 20,解集为x|x R 且 x0;当 a0 时, ,解集为x|x 或 x 23【答案】 【解析】解:()f(x)的定义域为( ,+ ),f (x)=1+a 2x3x 2,由 f(x)=0,得 x1= ,x 2= ,x 1x 2
20、,由 f(x)0 得 x ,x ;由 f(x)0 得 x ;故 f(x)在(, )和( ,+)单调递减,在( , )上单调递增;()a0,x 10,x 20,x,当 时,即 a4当 a4 时,x 21,由()知,f(x)在上单调递增, f (x)在 x=0 和 x=1 处分别取得最小值和最大值当 0a4 时,x 21,由()知,f(x)在单调递增,在上单调递减,因此 f(x)在 x=x2= 处取得最大值,又 f(0)=1,f(1)=a,当 0a1 时,f (x)在 x=1 处取得最小值;当 a=1 时,f ( x)在 x=0 和 x=1 处取得最小值;当 1a4 时,f (x)在 x=0 处取得最小值24【答案】 精选高中模拟试卷第 15 页,共 15 页【解析】(1)证明:设 x2x 10,f(x 1)f(x 2)= ( 1)( 1)= ,由题设可得 x2x10,且 x2x10,f (x 1) f(x 2)0,即 f(x 1)f(x 2),故 f(x)在(0,+)上是减函数(2)当 x0 时,x0,f(x)= 1=f(x),f(x)= +1又 f(0)=0 ,故函数 f(x)的解析式为 f(x)=