收藏 分享(赏)

商水县高中2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8966383 上传时间:2019-07-18 格式:DOC 页数:15 大小:477.50KB
下载 相关 举报
商水县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共15页
商水县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共15页
商水县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共15页
商水县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共15页
商水县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页商水县高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 过点 P(2,2)作直线 l,使直线 l 与两坐标轴在第二象限内围成的三角形面积为 8,这样的直线 l 一共有( )A3 条 B2 条 C1 条 D0 条2 如果 (mR,i 表示虚数单位),那么 m=( )A1 B 1 C2 D03 集合 的真子集共有( ),3A个 B个 C个 D个4 一个椭圆的半焦距为 2,离心率 e= ,则它的短轴长是( )A3 B C2 D65 函数 ( , )的部分图象如图所示,则 f (0)的值为( )()cos()fxx00

2、A. B. C. D. 213【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.6 下列结论正确的是( )A若直线 l平面 ,直线 l平面 ,则 B若直线 l平面 ,直线 l平面 ,则 C若直线 l1,l 2与平面 所成的角相等,则 l1l2D若直线 l 上两个不同的点 A,B 到平面 的距离相等,则 l7 一个骰子由 六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )6A6 B3 C1 D2精选高中模拟试卷第 2 页,共 15 页8 实数 a=0.2 ,b=log 0.2,c= 的大小关系正确的是( )Aacb Babc Cba c Dbca9

3、 函数 f(x)=ax 2+2(a 1)x+2 在区间(,4 上为减函数,则 a 的取值范围为( )A0a B0a C0a Da10数列a n满足 an+2=2an+1an,且 a2014,a 2016是函数 f(x)= +6x1 的极值点,则log2(a 2000+a2012+a2018+a2030)的值是( )A2 B3 C4 D511已知命题 p;对任意 xR,2x 22x+10;命题 q:存在 xR,sinx+cosx= ,则下列判断: p 且 q 是真命题;p 或 q 是真命题; q 是假命题;p 是真命题,其中正确的是( )A B C D12已知抛物线 的焦点为 , ,点 是抛物线

4、上的动点,则当 的值最小时,24yxF(1,)AP|PFA的PF面积为( )A. B. C. D. 2224【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.二、填空题13曲线 在点(3,3)处的切线与轴 x 的交点的坐标为 14下列四个命题申是真命题的是 (填所有真命题的序号)“pq 为真” 是 “pq 为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为 2,底面边长为 3 的正三棱锥中,侧棱与底面成 30的角;动圆 P 过定点 A( 2,0),且在定圆 B:(x 2) 2+y2=36 的内部与其相内切,则动圆圆心 P

5、 的轨迹为一个椭圆精选高中模拟试卷第 3 页,共 15 页158 名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)16已知 x 是 400 和 1600 的等差中项,则 x= 17满足 tan(x+ ) 的 x 的集合是 18已知点 M(x,y)满足 ,当 a0,b0 时,若 ax+by 的最大值为 12,则 + 的最小值是 三、解答题19已知 a,b,c 分别为ABC 三个内角 A,B ,C 的对边,c= asinCccosA(1)求 A;(2)若 a=2,ABC 的面积为 ,求 b,c 20已知曲线 C 的极坐标方程为 42cos2+92

6、sin2=36,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系;()求曲线 C 的直角坐标方程;()若 P(x,y)是曲线 C 上的一个动点,求 3x+4y 的最大值精选高中模拟试卷第 4 页,共 15 页21已知向量 =(x, y), =(1,0),且( + )( )=0 (1)求点 Q(x,y)的轨迹 C 的方程;(2)设曲线 C 与直线 y=kx+m 相交于不同的两点 M、N,又点 A(0,1),当|AM|=|AN|时,求实数 m 的取值范围22(1)直线 l 的方程为( a+1)x+y+2a=0(aR)若 l 在两坐标轴上的截距相等,求 a 的值;(2)已知

7、A(2,4),B (4,0),且 AB 是圆 C 的直径,求圆 C 的标准方程23本小题满分 12 分 已知数列 na中, ,其前 项和 满足123,5annS.)3(212nSnn求数列 a的通项公式 ;a 若 ,设数列 nb的前 的和为 nS,当 为何值时, nS有最大值,并求最大值. 256log()nnbN*精选高中模拟试卷第 5 页,共 15 页24设函数 f(x)=lg(a xbx),且 f(1)=lg2,f(2)=lg12(1)求 a,b 的值(2)当 x1,2时,求 f(x )的最大值(3)m 为何值时,函数 g( x)=a x的图象与 h(x)=b xm 的图象恒有两个交点精

8、选高中模拟试卷第 6 页,共 15 页商水县高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:假设存在过点 P(2,2)的直线 l,使它与两坐标轴围成的三角形的面积为 8,设直线 l 的方程为: ,则 即 2a2b=ab直线 l 与两坐标轴在第二象限内围成的三角形面积 S= ab=8,即 ab=16,联立 ,解得:a= 4,b=4直线 l 的方程为: ,即 xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题2 【答案】A【解析】解:因为 ,而 (mR ,i 表示虚数单位),所以

9、,m=1故选 A【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题3 【答案】C【解析】精选高中模拟试卷第 7 页,共 15 页考点:真子集的概念.4 【答案】C【解析】解:椭圆的半焦距为 2,离心率 e= ,c=2,a=3,b=2b=2 故选:C【点评】本题主要考查了椭圆的简单性质属基础题5 【答案】D【解析】易知周期 , .由 ( ),得12()T2T521k( ),可得 ,所以 ,则 ,6kZ56()cos()6fx5(0)2cos()36f故选 D.6 【答案】B【解析】解:A 选项中,两个平面可以相交, l

10、与交线平行即可,故不正确;B 选项中,垂直于同一平面的两个平面平行,正确;C 选项中,直线与直线相交、平行、异面都有可能,故不正确;D 中选项也可能相交故选:B【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础7 【答案】A【解析】试题分析:根据与相邻的数是 ,而与相邻的数有 ,所以 是相邻的数,故“?”表示的数是,1,431,25,3故选 A考点:几何体的结构特征8 【答案】C精选高中模拟试卷第 8 页,共 15 页【解析】解:根据指数函数和对数函数的性质,知 log 0.20,00.2 1, ,即 0a1,b0,c 1,bac故选:C【点评】

11、本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键9 【答案】B【解析】解:当 a=0 时,f( x)= 2x+2,符合题意当 a0 时,要使函数 f(x)=ax 2+2(a1)x+2 在区间( ,4 上为减函数 0a综上所述 0a故选 B【点评】本题主要考查了已知函数再某区间上的单调性求参数 a 的范围的问题,以及分类讨论的数学思想,属于基础题10【答案】C【解析】解:函数 f(x)= +6x1,可得 f(x )=x 28x+6,a 2014,a 2016是函数 f(x)= +6x1 的极值点,a 2014,a 2016是方程 x28x+6=0 的两实数根,

12、则 a2014+a2016=8数列a n中,满足 an+2=2an+1an,可知a n为等差数列,a 2014+a2016=a2000+a2030,即 a2000+a2012+a2018+a2030=16,从而 log2(a 2000+a2012+a2018+a2030)=log 216=4故选:C【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键11【答案】D【解析】解:命题 p;对任意 xR,2x 22x+10 是假命题,命题 q:存在 xR,sinx+cosx= 是真命题,精选高中模拟试卷第 9 页,共 15 页不正确,正确,不正确, 正确故选 D12【

13、答案】B 【解析】设 ,则 .又设 ,则 , ,所以2(,)4yP221|4()yFA214yt24yt1,当且仅当 ,即 时,等号成立,此时点 ,22| 1()FtAtt(,2)P的面积为 ,故选B.P|Fy二、填空题13【答案】 ( ,0) 【解析】解:y= ,斜率 k=y|x=3=2,切线方程是:y3= 2(x3),整理得:y= 2x+9,令 y=0,解得:x= ,故答案为: 【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题14【答案】 【解析】解:“ pq 为真” ,则 p,q 同时为真命题,则“pq 为真” ,当 p 真 q 假时,满足 pq 为真,但 pq 为假,

14、则“ pq 为真”是“ pq 为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为 PABC,顶点 P 在底面的射影为 O,则 O 为ABC 的中心,PCO 为侧棱与底面所成角精选高中模拟试卷第 10 页,共 15 页正三棱锥的底面边长为 3,CO=侧棱长为 2,在直角POC 中,tan PCO=侧棱与底面所成角的正切值为 ,即侧棱与底面所成角为 30,故 正确,如图,设动圆 P 和定圆 B 内切于 M,则动圆的圆心 P 到两点,即定点 A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|

15、PM|+|PB|=|BM|=64=|AB|点 P 的轨迹是以 A、B 为焦点的椭圆,故动圆圆心 P 的轨迹为一个椭圆,故正确,故答案为:15【答案】 15 【解析】解:8 名支教名额分配到三所学校,每个学校至少一个名额,则 8 人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),甲学校至少分到两个名额,第一类是 1 种,第二类有 4 种,第三类有 4 种,第四类有 3 种,第五类也有 3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为 1+4+4+3+3=15 种精选高中模拟试卷第 11 页,共 15 页故答案为:15【点评】本题考查了分类计数

16、原理得应用,关键是分类,属于基础题16【答案】 1000 【解析】解:x 是 400 和 1600 的等差中项,x= =1000故答案为:100017【答案】 k , +k),kZ 【解析】解:由 tan(x+ ) 得 +kx+ +k,解得 k x +k,故不等式的解集为k , +k),kZ,故答案为:k , +k),kZ,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键18【答案】 4 【解析】解:画出满足条件的平面区域,如图示:,精选高中模拟试卷第 12 页,共 15 页由 ,解得:A (3,4),显然直线 z=ax+by 过 A(3, 4)时 z 取到最大值

17、 12,此时:3a+4b=12,即 + =1, + =( + )( + )=2+ + 2+2 =4,当且仅当 3a=4b 时“= ”成立,故答案为:4【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1” 的灵活运用,是基础题三、解答题19【答案】 【解析】解:(1)c= asinCccosA,由正弦定理有:sinAsinCsinCcosAsinC=0,即 sinC( sinAcosA1) =0,又,sinC0,所以 sinAcosA1=0,即 2sin(A )=1,所以 A= ;(2)S ABC= bcsinA= ,所以 bc=4,a=2,由余弦定理得:a 2

18、=b2+c22bccosA,即 4=b2+c2bc,即有 ,解得 b=c=220【答案】 【解析】解:()由 42cos2+92sin2=36 得 4x2+9y2=36,化为 ;()设 P(3cos,2sin),则 3x+4y= ,精选高中模拟试卷第 13 页,共 15 页R,当 sin(+ )=1 时,3x+4y 的最大值为 【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题21【答案】 【解析】解:(1)由题意向量 =(x, y), =(1,0),且( + )( )=0 , ,化简得 ,Q 点的轨迹 C 的方程为 (2)由 得(3k 2+1)x

19、 2+6mkx+3(m 21)=0,由于直线与椭圆有两个不同的交点,0,即 m23k 2+1(i)当 k0 时,设弦 MN 的中点为 P(x P,y P),x M、x N分别为点 M、N 的横坐标,则,从而 , ,又|AM|=|AN|,APMN则 ,即 2m=3k2+1,将代入得 2mm 2,解得 0m 2,由得 ,解得 ,故所求的 m 的取值范围是( ,2)(ii)当 k=0 时,|AM|=|AN|,APMN,m 23k 2+1,解得1 m1综上,当 k0 时, m 的取值范围是( ,2),当 k=0 时,m 的取值范围是( 1,1)【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小

20、时分析解决问题的能力,属于中档题22【答案】 精选高中模拟试卷第 14 页,共 15 页【解析】解:(1)当 a=1 时,直线化为 y+3=0,不符合条件,应舍去;当 a1 时,分别令 x=0,y=0,解得与坐标轴的交点(0, a2),( ,0)直线 l 在两坐标轴上的截距相等,a2= ,解得 a=2 或 a=0;(2)A(2,4),B (4,0),线段 AB 的中点 C 坐标为( 1,2)又|AB|= ,所求圆的半径 r= |AB|= 因此,以线段 AB 为直径的圆 C 的标准方程为(x 1) 2+(y2) 2=1323【答案】【解析】由题意知 3121nSSnn , 即 31nan231

21、)(.)()( aaann2.52 221 检验知 n=1, 2 时,结论也成立,故 an=2n+1 由 8822256log()loglnb naN*法一: 当 时, ;当 时, ;130b4820b当 时, n8故 时, nS达最大值, . 4或 143S法二:可利用等差数列的求和公式求解24【答案】 【解析】解:(1)f(x)=lg(a xbx),且 f(1)=lg2,f (2)=lg12 ,ab=2,a 2b2=12,解得:a=4,b=2;(2)由(1)得:函数 f(x) =lg(4 x2x),当 x1,2 时, 4x2x2,12,故当 x=2 时,函数 f(x)取最大值 lg12,(3)若函数 g(x)=a x的图象与 h(x)=b xm 的图象恒有两个交点则 4x2x=m 有两个解,令 t=2x,则 t0,精选高中模拟试卷第 15 页,共 15 页则 t2t=m 有两个正解;则 ,解得:m( ,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报