1、精选高中模拟试卷第 1 页,共 17 页屏边苗族自治县高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 f(x)为偶函数,且 f(x+2)=f(x),当2x0 时,f(x)=2 x;若 nN *,a n=f(n),则 a2017等于( )A2017 B8 C D2 某几何体的三视图如图所示,其中正视图是腰长为 2 的等腰三角形,俯视图是半径为1 的半圆,则其侧视图的面积是( )A B C1 D3 下列函数中,既是奇函数又在区间(0,+)上单调递增的函数为( )Ay=sinx By=1g2 x Cy=lnx Dy= x 3【考点】函数单调性的
2、判断与证明;函数奇偶性的判断【专题】函数的性质及应用【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项4 已知直线 mxy+1=0 交抛物线 y=x2 于 A、B 两点,则AOB( )A为直角三角形 B为锐角三角形C为钝角三角形 D前三种形状都有可能5 若直线 与曲线 : 没有公共点,则实数 的最大值为( ):1lykxC1()exfxkA1 B C1 D23【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力精选高中模拟试卷第 2 页,共 17 页6 某大学数学系
3、共有本科生 1000 人,其中一、二、三、四年级的人数比为 4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为 200 的样本,则应抽取三年级的学生人数为( )A80 B40 C60 D207 已知全集 , , ,则 ( )1,2345,67U2,46A1,357B()UABA B C D2,4612,42,58 设 f(x)=asin(x+) +bcos(x+)+4,其中 a,b, 均为非零的常数,f(1988)=3,则f(2008)的值为( )A1 B3 C5 D不确定9 已知数列 是各项为正数的等比数列,点 、 都在直线 上,则数na 2(,log)M25(,log)Na1y
4、x列 的前 项和为( )nA B C D21221n1n10某校在暑假组织社会实践活动,将 8 名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36 种 B38 种 C108 种 D114 种11函数 y=x+xlnx 的单调递增区间是( )A(0,e 2) B(e 2,+) C( ,e 2) D(e 2,+)12已知 是三角形的一个内角,且 ,则这个三角形是( )A钝角三角形 B锐角三角形C不等腰的直角三角形 D等腰直角三角形二、填空题13设直线系 M:xcos+(y2)sin =1(02)
5、,对于下列四个命题:AM 中所有直线均经过一个定点B存在定点 P 不在 M 中的任一条直线上C对于任意整数 n(n 3),存在正 n 边形,其所有边均在 M 中的直线上DM 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号)14设 ,实数 , 满足 ,若 ,则实数 的取值范围是_Rmxy2360mxy182yxm【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学精选高中模拟试卷第 3 页,共 17 页思想与运算求解能力15命题“若 a0,b0,则 ab0”的逆否命题是 (填“真命题” 或“假命题” )16设 满足条件 ,
6、若 有最小值,则 的取值范围为 ,xy,1xyazxya17对任意实数 x,不等式 ax22ax40 恒成立,则实数 a 的取值范围是 18函数 f(x)= 2ax+2a+1 的图象经过四个象限的充要条件是 三、解答题19(本小题满分 12 分)ABC 的三内角 A,B,C 的对边分别为 a,b,c,AD 是 BC 边上的中线(1)求证:AD ;122b2 2c2 a2(2)若 A120,AD , ,求ABC 的面积192sin Bsin C3520若函数 f(x)=sin xcosx+ sin2x (0)的图象与直线 y=m(m 为常数)相切,并且切点的横坐标依次构成公差为 的等差数列()求
7、 及 m 的值;()求函数 y=f(x)在 x0,2上所有零点的和精选高中模拟试卷第 4 页,共 17 页21如图,在四棱锥 PABCD 中,PD平面 ABCD,PD=DC=BC=1,AB=2,ABDC, BCD=90(1)求证:PCBC;(2)求点 A 到平面 PBC 的距离22如图,在平面直角坐标系 xOy 中,已知曲线 C 由圆弧 C1 和圆弧 C2 相接而成,两相接点 M,N 均在直线x=5 上,圆弧 C1 的圆心是坐标原点 O,半径为 13;圆弧 C2 过点 A(29,0)(1)求圆弧 C2 的方程;(2)曲线 C 上是否存在点 P,满足 ?若存在,指出有几个这样的点;若不存在,请说
8、明理由精选高中模拟试卷第 5 页,共 17 页23已知函数 , 32()1fxax0a(1)当 时,求函数 的单调区间;2a()f(2)若关于的不等式 在 上有解,求实数的取值范围0,)24设 f(x)=ax 2(a+1)x+1(1)解关于 x 的不等式 f(x )0;(2)若对任意的 a 1,1 ,不等式 f(x)0 恒成立,求 x 的取值范围精选高中模拟试卷第 6 页,共 17 页屏边苗族自治县高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:f(x+2 )= f(x),f( x+4)=f (x+2)=f(x),即 f(x+4)=
9、f ( x),即函数的周期是 4a2017=f(2017 )=f (504 4+1)=f(1),f( x)为偶函数,当2x0 时,f(x)=2 x,f( 1) =f(1)= ,a2017=f(1)= ,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键2 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为 2 的等腰三角形,俯视图是半径为 1 的半圆,半圆锥的底面半径为 1,高为 ,即半圆锥的侧视图是一个两直角边长分别为 1 和 的直角三角形,故侧视图的面积是 ,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的
10、关键是得到该几何体的形状3 【答案】B【解析】解:根据 y=sinx 图象知该函数在(0,+)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在( 0,+ )上单调递增,所以选项 B 正确;根据 y=lnx 的图象,该函数非奇非偶;根据单调性定义知 y=x 3 在(0,+)上单调递减故选 B【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义精选高中模拟试卷第 7 页,共 17 页4 【答案】A【解析】解:设 A(x 1,x 12), B(x 2,x 22),将直线与抛物线方程联立得 ,消去 y 得:x 2mx1=0
11、,根据韦达定理得:x 1x2=1,由 =(x 1,x 12), =(x 2,x 22),得到 =x1x2+(x 1x2) 2=1+1=0,则 ,AOB 为直角三角形故选 A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为 0,两向量互相垂直5 【答案】C【解析】令 ,则直线 : 与曲线 : 没有公共点,11exgxfkxkl1ykxCyfx等价于方程 在 上没有实数解假设
12、,此时 , 又函0R0g10ekg数 的图象连续不断,由零点存在定理,可知 在 上至少有一解,与“方程 在 上gx xRgxR没有实数解”矛盾,故 又 时, ,知方程 在 上没有实数解,所以 的最1k1egx大值为 ,故选 C16 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为 200 的样本,三年级要抽取的学生是 200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果精选高中模拟试卷第 8 页,共 17 页7 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要
13、素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.8 【答案】B【解析】解:f(1988)=asin(1988+ )+bcos(1998 +)+4=asin+bcos+4=3,asin+bcos =1,故 f(2008)=asin(2008+ )+bcos(2008
14、+)+4=asin+bcos+4= 1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题9 【答案】C 【解析】解析:本题考查等比数列的通项公式与前 项和公式 , , ,n2log1a25l42a, , ,数列 的前 项和为 ,选 C516a2qna2110【答案】A【解析】解:由题意可得,有 2 种分配方案:甲部门要 2 个电脑特长学生,则有 3 种情况;英语成绩优秀学生的分配有 2 种可能;再从剩下的 3 个人中选一人,有 3 种方法根据分步计数原理,共有 323=18 种分配方案甲部门要 1 个电脑特长学生,则方法有 3 种;英语成绩优秀学生的分配方法有 2 种;
15、再从剩下的 3 个人种选 2 个人,方法有 33 种,共 323=18 种分配方案由分类计数原理,可得不同的分配方案共有 18+18=36 种,故选 A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法11【答案】B精选高中模拟试卷第 9 页,共 17 页【解析】解:函数的定义域为(0,+)求导函数可得 f(x)=lnx+2,令 f(x)0,可得 xe 2,函数 f(x)的单调增区间是(e 2,+)故选 B12【答案】A【解析】解:(sin+cos) 2= ,2sin cos= , 是三角形的一个内角,则 sin0,cos0
16、, 为钝角,这个三角形为钝角三角形故选 A【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状二、填空题13【答案】BC【解析】【分析】验证发现,直线系 M:xcos +(y2)sin =1(02)表示圆 x2+(y2) 2=1 的切线的集合,AM 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点 P 不在 M 中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数 n(n 3),存在正 n 边形,其所有边均在 M 中的直线上,由直线系的几何意义可判断,DM 中的直线所能围成的正三角形面积一定相等,由它们
17、是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系 M:xcos +(y2)sin=1(02)中每条直线的距离 d=1,直线系 M:xcos +(y2)sin=1(02 )表示圆 x2+(y2) 2=1 的切线的集合,A由于直线系表示圆 x2+(y2) 2=1 的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故 A 不正确;B存在定点 P 不在 M 中的任一条直线上,观察知点 M(0,2)即符合条件,故 B 正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数 n(n3),存在正 n 边形,其所有边均在 M 中的直线上,故 C 正
18、确;D如下图,M 中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如 BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC精选高中模拟试卷第 10 页,共 17 页14【答案】 .3,6【解析】15【答案】 真命题 精选高中模拟试卷第 11 页,共 17 页【解析】解:若 a0,b0,则 ab0 成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键16【答案】 1,)【解析】解析:不等式 表示的平面
19、区域如图所示,由 得 ,当,1xyazaxyxz时,平移直线 可知, 既没有最大值,也没有最小值;当 时,平移直线 可知,在点 A 处0alz 12l取得最小值;当 时,平移直线 可知, 既没有最大值,也没有最小值;当 时,平移z03lz 1a直线 可知,在点 A 处 取得最大值,综上所述, 4l 1aOxy1l23l17【答案】 (4,0 【解析】解:当 a=0 时,不等式等价为40,满足条件;当 a0 时,要使不等式 ax22ax40 恒成立,则满足 ,即 ,解得4 a0,综上:a 的取值范围是(4,0 故答案为:(4,0【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论精选
20、高中模拟试卷第 12 页,共 17 页18【答案】 【解析】解:f(x)= 2ax+2a+1,求导数,得 f(x)=a(x1)(x+2)a=0 时,f (x)=1,不符合题意;若 a0,则当 x2 或 x1 时,f(x)0;当2x1 时,f (x)0,f(x)在( 2,1)是为减函数,在(, 2)、(1,+)上为增函数;若 a0,则当 x2 或 x1 时,f(x)0;当2x1 时,f (x)0,f(x)在( 2,1)是为增函数,在(, 2)、(1,+)上为减函数因此,若函数的图象经过四个象限,必须有 f(2)f(1)0,即( )( )0,解之得 故答案为:【点评】本题主要考查了利用导数研究函数
21、的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题三、解答题19【答案】【解析】解:(1)证明:D 是 BC 的中点,BDDC .a2法一:在ABD 与ACD 中分别由余弦定理得 c2AD 2 2ADa24cosADB,a2精选高中模拟试卷第 13 页,共 17 页b2AD 2 2AD cosADC,a24a2得 c2b 22AD 2 ,a22即 4AD22b 22c 2a 2,AD .122b2 2c2 a2法二:在ABD 中,由余弦定理得AD2c 2 2c cos Ba24a2c 2 aca24a2 c2 b22ac ,2b2 2c2 a24AD .122b2 2c2 a2(2)
22、A120,AD , ,1219sin Bsin C35由余弦定理和正弦定理与(1)可得a2b 2c 2bc,2b22c 2a 219, ,bc35联立解得 b3,c5,a7,ABC 的面积为 S bc sin A 35sin 120 .12121534即ABC 的面积为 .154 320【答案】 精选高中模拟试卷第 14 页,共 17 页【解析】解:()f(x) =sinxcosx+ sin2x= x+ (1 cos2x) = 2x 2x=sin(2x ),依题意得函数 f(x)的周期为 且 0,2= ,=1 ,则 m=1;()由()知 f(x)=sin(2x ), , 又x0,2 , y=f
23、(x)在 x0,2上所有零点的和为 【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题21【答案】 【解析】解:(1)证明:因为 PD平面 ABCD,BC 平面 ABCD,所以 PDBC由BCD=90,得 CDBC,又 PDDC=D, PD、DC平面 PCD,所以 BC平面 PCD因为 PC平面 PCD,故 PCBC(2)(方法一)分别取 AB、PC 的中点 E、F,连 DE、DF,则:易证 DECB,DE平面 PBC,点 D、E 到平面 PBC 的距离相
24、等又点 A 到平面 PBC 的距离等于 E 到平面 PBC 的距离的 2 倍由(1)知:BC平面 PCD,所以平面 PBC平面 PCD 于 PC,因为 PD=DC,PF=FC,所以 DFPC,所以 DF平面 PBC 于 F易知 DF= ,故点 A 到平面 PBC 的距离等于 精选高中模拟试卷第 15 页,共 17 页(方法二)等体积法:连接 AC设点 A 到平面 PBC 的距离为 h因为 ABDC ,BCD=90,所以ABC=90从而 AB=2,BC=1,得ABC 的面积 SABC =1由 PD平面 ABCD 及 PD=1,得三棱锥 PABC 的体积 因为 PD平面 ABCD,DC平面 ABC
25、D,所以 PDDC又 PD=DC=1,所以 由 PC BC,BC=1,得PBC 的面积 由 VAPBC=VPABC, ,得 ,故点 A 到平面 PBC 的距离等于 【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力22【答案】 【解析】解:(1)圆弧 C1 所在圆的方程为 x2+y2=169,令 x=5,解得 M(5,12),N(5, 12)2 分则直线 AM 的中垂线方程为 y6=2(x17),令 y=0,得圆弧 C2 所在圆的圆心为 (14,0),又圆弧 C2 所在圆的半径为 2914=15,所以圆弧 C2 的方程为(x 14
26、) 2+y2=225(5 x29)5 分(2)假设存在这样的点 P(x,y),则由 PA= PO,得 x2+y2+2x29=0 8 分由 ,解得 x=70 (舍去) 9 分由 ,解得 x=0(舍去),综上知,这样的点 P 不存在10 分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强23【答案】() 的单调递增区间是 和 ,单调递减区间为 ;()()fx,2,32(,)31,)精选高中模拟试卷第 16 页,共 17 页【解析】试题分析:() 时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;2a() 对函数求导,对参数分类讨论,利用函
27、数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围试题解析:(1)当 时, ,32()41fxx所以 ,2()34fx由 ,得 或 ,0所以函数 的单调递减区间为 ()f 2(,)3(2)要使 在 上有解,只要 在区间 上的最小值小于等于 0x1,)(fx1,)因为 ,223faxa令 ,得 , 1 ()0100考点:导数与函数的单调性;分类讨论思想 精选高中模拟试卷第 17 页,共 17 页24【答案】 【解析】解:(1)f(x) 0,即为 ax2(a+1)x+10,即有(ax1)(x1)0,当 a=0 时,即有 1x0,解得 x1;当 a0 时,即有(x1)(x )0,由 1
28、可得 x1;当 a=1 时,(x1) 20,即有 xR ,x 1;当 a1 时,1 ,可得 x1 或 x ;当 0a1 时,1 ,可得 x1 或 x 综上可得,a=0 时,解集为x|x1 ;a0 时,解集为x| x1;a=1 时,解集为x|xR,x1;a1 时,解集为x|x1 或 x ;0a1 时,解集为x|x1 或 x (2)对任意的 a 1,1 ,不等式 f(x)0 恒成立,即为 ax2(a+1)x+1 0,即 a(x 21) x+10,对任意的 a1,1 恒成立设 g(a)=a( x21)x+1,a1,1则 g(1 )0,且 g(1) 0,即( x21)x+10,且(x 21)x+10,即(x1 )(x+2)0,且 x(x1)0,解得2 x1,且 x1 或 x 0可得2 x0故 x 的取值范围是(2,0)