1、精选高中模拟试卷第 1 页,共 17 页尼勒克县高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图,直三棱柱 ABCA1B1C1 中,侧棱 AA1平面 ABC若 AB=AC=AA1=1,BC= ,则异面直线 A1C与 B1C1 所成的角为( )A30 B45 C60 D902 已知双曲线和离心率为 的椭圆有相同的焦点 , 是两曲线的一个公共点,若4sin21F、 P,则双曲线的离心率等于( )21cosPFA B C D2526273 已知空间四边形 , 、 分别是 、 的中点,且 , ,则( )ACDMNABD4A6BA B C D15MN
2、1015MN5MN4 已知直线 xy+a=0 与圆心为 C 的圆 x2+y2+2 x4 y+7=0 相交于 A,B 两点,且 =4,则实数 a 的值为( )A 或 B 或 3 C 或 5 D3 或 55 已知命题 p:存在 x00,使 2 1,则p 是( )A对任意 x0,都有 2x1 B对任意 x0,都有 2x1C存在 x00,使 2 1 D存在 x00,使 2 16 已知等比数列a n的第 5 项是二项式(x+ ) 4 展开式的常数项,则 a3a7( )A5 B18 C24 D367 函数 y= 的图象大致为( )A B C D精选高中模拟试卷第 2 页,共 17 页8 某班设计了一个八边
3、形的班徽(如图),它由腰长为 1,顶角为 的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A 2sincos2 B sin3cosC. 31 D 219 已知某市两次数学测试的成绩 1 和 2 分别服从正态分布 1:N 1(90,86)和 2:N 2(93,79),则以下结论正确的是( )A第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定10九章算术是我国古代的数学巨
4、著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽 AD3 丈,长 AB4 丈,上棱 EF2 丈,EF平面 ABCD.EF 与平面 ABCD 的距离为 1 丈,问它的体积是( )A4 立方丈 B5 立方丈C6 立方丈 D8 立方丈11函数 y=ax+1(a0 且 a1)图象恒过定点( )A(0,1) B( 2,1) C(2,0) D(0,2)12某校为了了解 1500 名学生对学校食堂的意见,从中抽取 1 个容量为 50 的样本,采用系统抽样法,则分段间隔为( )1111A B C
5、D1052030精选高中模拟试卷第 3 页,共 17 页二、填空题13已知实数 , 满足 ,目标函数 的最大值为 4,则 _xy230xy3zxyaa【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力14 已知 是等差数列, 为其公差, 是其前 项和,若只有 是 中的最小项,则可得出的结论中所有正确的序号是_ 15函数 y=lgx 的定义域为 16【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f(x)= ,若函数210 ()xey=f(f (x)a)1 有三个零点,则 a 的取值范围是_17如图,正方形 的边长为 1 ,它是水平放置的一个平面图形的
6、直观图,则原图的OABCcm周长为 111118在直角坐标系 xOy 中,已知点 A(0,1)和点 B(3,4),若点 C 在AOB 的平分线上且| |=2,则= 三、解答题19已知函数 f(x)的定义域为 x|xk,k Z,且对定义域内的任意 x,y 都有 f(xy)=成立,且 f(1)=1 ,当 0x2 时,f (x)0(1)证明:函数 f(x)是奇函数;(2)试求 f(2),f(3)的值,并求出函数 f(x)在2 ,3 上的最值精选高中模拟试卷第 4 页,共 17 页20已知命题 p:x2,4,x 22x2a0 恒成立,命题 q:f(x)=x 2ax+1 在区间 上是增函数若 pq 为真
7、命题,pq 为假命题,求实数 a 的取值范围21(本小题满分 12 分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各 5 名职工的成绩,成绩如下表: 甲单位 87 88 91 91 93乙单位 85 89 91 92 93(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位 5 名职工中抽取 2 名,他们的成绩组成一个样本,求抽取的 2 名职工的分数差至少是 4 的概率.22在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了 两个问题,规定:
8、被抽签抽到的答题同学,答对问题 可获得 分,答对问题 可获得 200 分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题答题终止后,获得的总分决定获奖的等次若甲是被抽到的答题同学,且假设甲答对 问题的概率分别为 ()记甲先回答问题 再回答问题 得分为随机变量 ,求 的分布列和数学期望;()你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由精选高中模拟试卷第 5 页,共 17 页23双曲线 C 与椭圆 + =1 有相同的焦点,直线 y= x 为 C 的一条渐近线求双曲线 C 的方程24已知函数 ()求曲线 在点 处的切线方程;
9、()设 ,若函数 在 上(这里 )恰有两个不同的零点,求实数 的取值范围精选高中模拟试卷第 6 页,共 17 页尼勒克县高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:因为几何体是棱柱,BCB 1C1,则直线 A1C 与 BC 所成的角为就是异面直线 A1C 与 B1C1 所成的角直三棱柱 ABCA1B1C1 中,侧棱 AA1平面 ABC若AB=AC=AA1=1,BC= ,BA 1= ,CA 1= ,三角形 BCA1 是正三角形,异面直线所成角为 60故选:C2 【答案】C【解析】试题分析:设椭圆的长半轴长为 ,双曲线的实半轴长为
10、,焦距为 , , ,且不妨设1a2acmPF1n2,由 , 得 , ,又 , 由余弦定理可知:nm122nm11nos2, , ,设双曲线的离心率为,则 ,解c24134c432c 432e)(得 .故答案选 C26e考点:椭圆的简单性质【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由 为公共点,可把焦半径P、 的长度用椭圆的半长轴以及双曲线的半实轴 来表示,接着用余弦定理表示1PF2 21,a,成为一个关于 以及的齐次式,等式两边同时除以 ,即可求得离心率.圆锥曲线问cos21,a2c题在选择填空中以考查定义和几何性质为主.3 【答案】A【解析】试题分析:取 的中点
11、 ,连接 , ,根据三角形中两边之和大于第三边,两边BCE,MN2,3E精选高中模拟试卷第 7 页,共 17 页之差小于第三边,所以 ,故选 A15MN考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题4 【答案】C【解析】解:圆 x2+y2+2 x4 y+7=0,可化为(x+ ) 2+(y2 ) 2=
12、8 =4, 2 2 cosACB=4cosACB= ,ACB=60圆心到直线的距离为 , = ,a= 或 5 故选:C5 【答案】A【解析】解:命题 p:存在 x00,使 2 1 为特称命题,p 为全称命题,即对任意 x0,都有 2x1故选:A6 【答案】D【解析】解:二项式(x+ ) 4 展开式的通项公式为 Tr+1= x42r,令 42r=0,解得 r=2,展开式的常数项为 6=a5,a 3a7=a52=36,精选高中模拟试卷第 8 页,共 17 页故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题7 【答案】D【解析】解:令 y=f(x
13、)= ,f( x)= = =f(x),函数 y= 为奇函数,其图象关于原点对称,可排除 A;又当 x0+,y+,故可排除 B;当 x+,y0,故可排除 C;而 D 均满足以上分析故选 D8 【答案】A【解析】试题分析:利用余弦定理求出正方形面积 cos2cos2-11 S;利用三角形知识得出四个等腰三角形面积 sin2i124S;故八边形面积 2cosin1 S.故本题正确答案为 A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式 sin21i12S求出个三角形的面积 sin24S;接下来利用余弦定理
14、可求出正方形的边长的平方 co-2,进而得到正方形的面积 cos2co-11 ,最后得到答案.9 【答案】C【解析】解:某市两次数学测试的成绩 1 和 2 分别服从正态分布 1:N 1(90,86)和 2:N 2(93,79), 1=90, 1=86, 2=93, 2=79,第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C精选高中模拟试卷第 9 页,共 17 页【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础10【答案】【解析】解析:选 B.如图,设 E、F 在平面 ABCD 上的射影分别为 P,Q,过 P,Q 分别作 GHMNAD 交 AB 于
15、 G,M,交 DC 于 H,N,连接 EH、GH 、FN 、MN,则平面 EGH 与平面 FMN 将原多面体分成四棱锥 E-AGHD 与四棱锥 F-MBCN 与直三棱柱 EGH-FMN.由题意得 GHMNAD3,GM EF2,EPFQ 1,AGMB AB GM 2,所求的体积为 V (S 矩形 AGHDS 矩形 MBCN)EPS EGHEF (23)1 3125 立方丈,故选131312B.11【答案】D【解析】解:令 x=0,则函数 f(0)=a 0+3=1+1=2函数 f(x)=a x+1 的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和 a0=1(a0 且 a1),属于
16、基础题12【答案】【解析】试题分析:分段间隔为 ,故选 D.5031考点:系统抽样二、填空题13【答案】 【解析】作出可行域如图所示:作直线 : ,再作一组平行于 的直线 : ,当直0l3xy0ll3xyza线 经过点 时, 取得最大值, ,所以 ,故l5(,2)3Mzamax5()327zma74a精选高中模拟试卷第 10 页,共 17 页14【答案】 【解析】因为只有 是 中的最小项,所以 , ,所以 ,故正确;,故正确;,无法判断符号,故错误,故正确答案答案:15【答案】 x|x0 【解析】解:对数函数 y=lgx 的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的
17、求法16【答案】 13e, )【解析】当 x0 时,由 f(x )1=0 得 x2+2x+1=1,得 x=2 或 x=0,精选高中模拟试卷第 11 页,共 17 页当 x0 时,由 f(x)1=0 得 ,得 x=0,10xe由,y=f(f(x)a)1=0 得 f(x)a=0 或 f(x)a=2,即 f(x)=a ,f(x)=a2,作出函数 f(x)的图象如图:y= 1(x0),ey= ,当 x(0,1)时,y0,函数是增函数,x(1,+ )时,y0,函数是减函数,xx=1 时,函数取得最大值: ,e当 1a2 时,即 a (3,3+ )时,y=f(f(x)a)1 有 4 个零点,e当 a2=1
18、+ 时,即 a=3+ 时则 y=f(f(x)a)1 有三个零点,当 a3+ 时,y=f(f(x) a)1 有 1 个零点e当 a=1+ 时,则 y=f(f(x)a )1 有三个零点,1当 时,即 a(1+ ,3)时,y=f(f (x)a)1 有三个零点 2eae综上 a ,函数有 3 个零点13, )故答案为: 1e, )点睛:已知函数有零点求参数取值范围常用的方法和思路精选高中模拟试卷第 12 页,共 17 页(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平
19、面直角坐标系中,画出函 数的图象,然后数形结合求解17【答案】 8cm【解析】考点:平面图形的直观图18【答案】 ( , ) 【解析】解: , ,设 OC 与 AB 交于 D(x,y)点则:AD:BD=1 :5即 D 分有向线段 AB 所成的比为则解得:精选高中模拟试卷第 13 页,共 17 页又| |=2 =( , )故答案为:( , )【点评】如果已知,有向线段 A(x 1,y 1),B(x 2,y 2)及点 C 分线段 AB 所成的比,求分点 C 的坐标,可将 A,B 两点的坐标代入定比分点坐标公式:坐标公式 进行求解三、解答题19【答案】 【解析】(1)证明:函数 f( x)的定义域为
20、x|x k,kZ,关于原点对称又 f(x y)= ,所以 f( x)=f(1x) 1= = = = = ,故函数 f(x)奇函数(2)令 x=1,y= 1,则 f(2)=f1( 1)= = ,令 x=1,y= 2,则 f(3)=f1( 2)= = = ,f(x 2)= = ,f(x 4)= ,则函数的周期是 4先证明 f(x)在2,3 上单调递减,先证明当 2x3 时,f(x)0,精选高中模拟试卷第 14 页,共 17 页设 2x3,则 0x21,则 f(x 2)= ,即 f(x)= 0,设 2x1x23,则 f(x 1)0,f(x 2)0,f(x 2x1)0,则 f(x 1) f(x 2)=
21、 ,f(x 1)f (x 2),即函数 f(x)在2,3 上为减函数,则函数 f(x)在2,3 上的最大值为 f(2)=0,最小值为 f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大20【答案】 【解析】解:x2,4,x 22x2a0 恒成立,等价于 a x2x 在 x2,4恒成立,而函数 g(x)= x2x 在 x2,4递增,其最大值是 g(4)=4,a4,若 p 为真命题,则 a4;f(x)=x 2ax+1 在区间 上是增函数,对称轴 x= ,a 1,若 q 为真命题,则 a1;由题意知 p、q 一真一假,当 p 真 q 假时,
22、a 4;当 p 假 q 真时,a 1,所以 a 的取值范围为(,14,+)21【答案】(1) , , , ,甲单位对法律知识的掌握更稳定;(2) .90甲x乙 542甲s8乙 21【解析】精选高中模拟试卷第 15 页,共 17 页试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共 种情况,抽取的两名职工的分数差至少是的事件10用列举法求得共有种,由古典概型公式得出概率.试题解析:解:(1) ,9391875)(甲x 90329185)(乙x4)0()()0()()9087(5 222222 甲
23、s乙 , 甲单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6 分)4考点:1.平均数与方差公式;2.古典概型22【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】() 的可能取值为 ,分布列为:精选高中模拟试卷第 16 页,共 17 页()设先回答问题 ,再回答问题 得分为随机变量 ,则 的可能取值为 ,分布列为:应先回答 所得分的期望值较高23【答案】 【解析】解:设双曲线方程为 (a0,b0)由椭圆 + =1,求得两焦点为(2,0),(2,0),对于双曲线 C:c=2又 y= x 为双曲线 C 的一条渐近线, = 解得 a=1,b= ,双曲线 C 的方程为 24【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】()函数定义域为 ,又 , 所求切线方程为 ,即()函数 在 上恰有两个不同的零点,精选高中模拟试卷第 17 页,共 17 页等价于 在 上恰有两个不同的实根等价于 在 上恰有两个不同的实根,令 则当 时, , 在 递减;当 时, , 在 递增故 ,又 , ,即