1、精选高中模拟试卷第 1 页,共 18 页相山区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若某程序框图如图所示,则该程序运行后输出的值是( )A. B. C. D. 78910【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.2 某班级有 6 名同学去报名参加校学生会的 4 项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A4320 B2400 C2160 D13203 已知 ,若圆 : ,圆 :2a1O015822ayxy2O恒有公共点,则 的取值
2、范围为( ).0422 ayaxyxA B C D),31,(),3()1,5(),3,5),3(),(4 以下四个命题中,真命题的是( )A ,0,xsintax精选高中模拟试卷第 2 页,共 18 页B“对任意的 , ”的否定是“存在 ,xR210x0xR201xC ,函数 都不是偶函数()sin)fD 中,“ ”是“ ”的充要条件AicosBAC【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力5 如图是一容量为 100 的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11 B11.5 C12 D12.56 若动点 A,B 分别在直线 l1:x+y 7
3、=0 和 l2:x+y5=0 上移动,则 AB 的中点 M 到原点的距离的最小值为( )A3 B2 C3 D47 在 中, , ,其面积为 ,则 等于( )60bsinsinabcABCA B C D93833928 某校在高三第一次模拟考试中约有 1000 人参加考试,其数学考试成绩近似服从正态分布,即( ),试卷满分 150 分,统计结果显示数学考试成绩不及格(低于 90 分)的人数占210,XNa0总人数的 ,则此次数学考试成绩在 100 分到 110 分之间的人数约为( )(A) 400 ( B ) 500 (C) 600 (D) 8009 函数 f(x)=x 33x2+5 的单调减区
4、间是( )A(0,2) B(0,3 ) C(0,1) D(0,5)10已知抛物线 C: 的焦点为 F,准线为 ,P 是 上一点,Q 是直线 PF 与 C 的一个交点,若y82ll,则 ( )FQPA6 B3 C D3834精选高中模拟试卷第 3 页,共 18 页第卷(非选择题,共 100 分)11在三棱柱 中,已知 平面 ,此三棱1ABC1A1=23,2BCABAC, ,柱各个顶点都在一个球面上,则球的体积为( )A B C. D326531212设集合 M=x|x22x30,N=x|log 2x0,则 MN 等于( )A(1 ,0) B( 1,1) C(0,1) D(1,3)二、填空题13当
5、 时,函数 的图象不在函数 的下方,则实数 的取值范围是,x( ) exf2()gxaa_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力14直线 l: ( t 为参数)与圆 C: ( 为参数)相交所得的弦长的取值范围是 15已知 tan= ,tan()= ,其中 , 均为锐角,则 = 16在等差数列a n中,a 1=7,公差为 d,前 n 项和为 Sn,当且仅当 n=8 时 Sn取得最大值,则 d 的取值范围为 17复数 z= (i 虚数单位)在复平面上对应的点到原点的距离为 18已知(1+x+x 2)(x ) n(n N+)的
6、展开式中没有常数项,且 2n8,则 n= 三、解答题19设函数 f()= ,其中,角 的顶点与坐标原点重合,始边与 x 轴非负半轴重合,终边经过点 P(x,y),且 0()若点 P 的坐标为 ,求 f( )的值;精选高中模拟试卷第 4 页,共 18 页()若点 P(x,y)为平面区域 : 上的一个动点,试确定角 的取值范围,并求函数 f()的最小值和最大值20【镇江 2018 届高三 10 月月考文科】已知函数 ,其中实数 为常数, 为自然对数的底数.(1)当 时,求函数 的单调区间;(2)当 时,解关于 的不等式 ;(3)当 时,如果函数 不存在极值点,求 的取值范围.21(本小题满分 10
7、 分)已知函数 .()|2|fxax(1)当 时,求不等式 的解集;3()3f(2)若 的解集包含 ,求的取值范围.|4|f1,精选高中模拟试卷第 5 页,共 18 页22已知函数 f(x)=alnx+ ,曲线 y=f(x)在点(1,f(1)处的切线方程为 y=2(I)求 a、b 的值;()当 x1 时,不等式 f( x) 恒成立,求实数 k 的取值范围23在平面直角坐标系中,矩阵 M 对应的变换将平面上任意一点 P(x,y)变换为点 P(2x+y,3x)()求矩阵 M 的逆矩阵 M1;()求曲线 4x+y1=0 在矩阵 M 的变换作用后得到的曲线 C的方程24(本题满分 12 分)有人在路边
8、设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在 1,2,3,4,5,6 点中任选一个,并押上赌注 元,然后掷 1 颗骰子,连续掷 3 次,若你所押的点数m在 3 次掷骰子过程中出现 1 次, 2 次,3 次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1 倍,2 倍,3 倍的奖励.如果 3 次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.(1)求掷 3 次骰子,至少出现 1 次为 5 点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.精选高中模拟试卷第 6 页,共 18 页精选高中模拟试卷第 7 页,共 18 页相山
9、区高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】运行该程序,注意到循环终止的条件,有 n 10,i 1;n 5,i 2;n 16,i 3;n 8,i 4;n4,i 5;n 2,i 6;n 1,i 7,到此循环终止,故选 A.2 【答案】D【解析】解:依题意,6 名同学可分两组:第一组(1,1,1,3),利用间接法,有 =388,第二组(1,1,2,2),利用间接法,有( ) =932根据分类计数原理,可得 388+932=1320 种,故选 D【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中
10、档题3 【答案】C【解析】由已知,圆 的标准方程为 ,圆 的标准方程为1O222(1)()(4)xyaO, ,要使两圆恒有公共点,则 ,即 222()()()xaya12|6a,解得 或 ,故答案选 C6|1|354 【答案】D5 【答案】C精选高中模拟试卷第 8 页,共 18 页【解析】解:由题意,0.065+x 0.1=0.5,所以 x 为 2,所以由图可估计样本重量的中位数是 12故选:C6 【答案】A【解析】解:l 1:x+y 7=0 和 l2:x+y5=0 是平行直线,可判断:过原点且与直线垂直时,中的 M 到原点的距离的最小值直线 l1:x+y 7=0 和 l2:x+y5=0,两直
11、线的距离为 = ,AB 的中点 M 到原点的距离的最小值为 + =3 ,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题7 【答案】B【解析】试题分析:由题意得,三角形的面积 ,所以 ,又 ,013sinsi624SbcAcbc4bc1所以 ,又由余弦定理,可得 ,所以 ,4c 20o1os613a3a则 ,故选 B039sinsinisi6abABCA考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到
12、是解答的关键,属于中档试题sinsiniabcaABCA8 【答案】A【解析】 P(X90)P(X110) ,P(90X 110)1 ,P(100X 110) ,1000 400. 故选 A.110 15 45 25 259 【答案】A【解析】解:f(x)=x 33x2+5,f(x)=3x 26x,精选高中模拟试卷第 9 页,共 18 页令 f(x)0,解得: 0x2,故选:A【点评】本题考察了函数的单调性,导数的应用,是一道基础题10【答案】A 解析:抛物线 C: 的焦点为 F(0,2),准线为 :y=2,yx82l设 P(a,2), B(m, ),则 =(a ,4), =(m , 2),
13、,2m= a,4= 4,m 2=32,由抛物线的定义可得|QF|= +2=4+2=6故选 A11【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.12【答案】C精选高中模拟试卷第 10 页,共 18 页【解析】解:集合 M=x|x22x30=x|1x3,N=x|log2x0=x|0x1,M N=x|0x1=(0,1)
14、故选:C【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用二、填空题13【答案】 2e,)【解析】由题意,知当 时,不等式 ,即 恒成立令0,1x( ) 2e1xax21ex, 令 , ,21hx2hxkxk0,1 在 为递减, , ,e0,xkk0,1x0x21e xh在 为递增, ,则 1eh2ea14【答案】 4 ,16 【解析】解:直线 l: (t 为参数),化为普通方程是 = ,即 y=tanx+1;圆 C 的参数方程 ( 为参数),化为普通方程是(x2) 2+(y1) 2=64;精选高中模拟试卷第 11 页,共 18 页画出图形,如
15、图所示 ;直线过定点(0,1),直线被圆截得的弦长的最大值是 2r=16,最小值是 2 =2 =2 =4弦长的取值范围是4 , 16故答案为:4 ,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题15【答案】 【解析】解:tan = , 均为锐角,tan()= = = ,解得: tan=1,= 故答案为: 【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题16【答案】 (1, ) 【解析】解:S n =7n+ ,当且仅当 n=8 时 Sn取得最大值,精选高中模拟试卷第 12 页,共 18 页 ,即 ,解得: ,综
16、上:d 的取值范围为(1, )【点评】本题主要考查等差数列的前 n 项和公式,解不等式方程组,属于中档题17【答案】 【解析】解:复数 z= =i( 1+i)=1i ,复数 z= (i 虚数单位)在复平面上对应的点(1,1)到原点的距离为: 故答案为: 【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力18【答案】 5 【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x ) n(nN +)的展开式中无常数项、x 1项、x 2项,利用(x ) n(nN +)的通项公式讨论即可【解答】解:设(x ) n(nN +)的展开式的通项为 Tr+1,则 Tr+
17、1= xnrx3r= xn4r,2n8,当 n=2 时,若 r=0,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n2;当 n=3 时,若 r=1,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n3;当 n=4 时,若 r=1,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n4;当 n=5 时,r=0 、1、2、3、4、5 时,(1+x+x 2)(x ) n(nN +)的展开式中均没有常数项,故 n=5 适合题意;精选高中模拟试卷第 13 页,共 18 页当 n=6 时,若 r=1,(1+x+x 2)(x ) n(n N+)的展开式中
18、有常数项,故 n6;当 n=7 时,若 r=2,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n7;当 n=8 时,若 r=2,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n2;综上所述,n=5 时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题三、解答题19【答案】 【解析】解()由点 P 的坐标和三角函数的定义可得:于是 f()= = =2()作出平面区域 (即 ABC)如图所示,其中 A(1,0),B(1,1),C(0,1)因为 P,所以 0 ,f()= = ,且 ,故当 ,即 时,
19、f( )取得最大值 2;当 ,即 =0 时,f( )取得最小值 1精选高中模拟试卷第 14 页,共 18 页【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想20【答案】(1)单调递增区间为 ;单调递减区间为 (2) (3)【解析】试题分析:把 代入由于对数的真数为正数,函数定义域为 ,所以函数化为 ,求导后在定义域下研究函数的单调性给出单调区间;代入 , ,分 和 两种情况解不等式;当 时, ,求导 ,函数 不存在极值点,只需恒成立,根据这个要求得出 的范围.试题解析:精选高中模拟试卷第 15 页,共 18 页(2
20、) 时, 当 时,原不等式可化为 记 ,则 ,当 时, ,所以 在 单调递增,又 ,故不等式解为 ; 当 时,原不等式可化为 ,显然不成立, 综上,原不等式的解集为 21【答案】(1) 或 ;(2) .|1x83,0【解析】精选高中模拟试卷第 16 页,共 18 页试题解析:(1)当 时, ,当 时,由 得 ,解得 ;3a25,()13,xf2x()3fx2531x当 时, ,无解;当 时,由 得 ,解得 , 的解集为2x()fxx()f58()f或 .|18(2) ,当 时, ,()|4|2|f a1,2x|4|2xax ,有条件得 且 ,即 ,故满足条件的的取值范围为 .a1303,0考点
21、:1、绝对值不等式的解法;2、不等式恒成立问题.22【答案】 【解析】解:(I)函数 f(x)=alnx+ 的导数为f(x)= ,且直线 y=2 的斜率为 0,又过点(1,2),f( 1) =2b=2,f(1)=ab=0,解得 a=b=1(II)当 x1 时,不等式 f( x) ,即为(x 1)lnx+ (xk)lnx ,即(k1 )lnx+ 0令 g(x)=(k 1)lnx+ ,g (x)= +1+ = ,令 m(x)=x 2+(k1)x+1,当 1 即 k1 时,m (x)在(1,+ )单调递增且 m(1)0,所以当 x1 时,g(x)0,g(x)在(1,+)单调递增,则 g(x)g(1)
22、=0 即 f(x) 恒成立精选高中模拟试卷第 17 页,共 18 页当 1 即 k1 时,m (x)在上(1, )上单调递减,且 m(1)0,故当 x(1 , )时,m (x)0 即 g(x)0,所以函数 g(x)在(1, )单调递减,当 x(1, )时,g(x)0 与题设矛盾,综上可得 k 的取值范围为1,+)23【答案】 【解析】解:()设点 P(x,y)在矩阵 M 对应的变换作用下所得的点为 P(x,y ),则 即 = ,M= 又 det(M)= 3,M 1= ;()设点 A(x,y)在矩阵 M 对应的变换作用下所得的点为 A(x,y ),则 =M1 = ,即 ,代入 4x+y1=0,得 ,即变换后的曲线方程为 x+2y+1=0【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题24【答案】【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际精选高中模拟试卷第 18 页,共 18 页问题的抽象能力要求较高,属于中档难度.