1、高一数学第一学期期末考试试题(必修 4)一、选择题:(每小题 5 分,共 12 题,合计 60 分)1. 下列命题中正确的是( ) A第一象限角必是锐角 B终边相同的角相等C相等的角终边必相同 D不相等的角其终边必不相同2. 等于( )sin30A B C D212323. 若 共线,且 则 等于( ,3)( )1,( ,5)(x BCA)A、1 B、2 C、3 D、44. 若 是 的一个内角,且 则 等于( )C12sinA、 B、 或 C、 D、 或300560601505. 设 , , ,则 的值为23sin512cos()3sinA. B. C. D. 6561656536. 若点 P
2、 在 的终边上,且 |OP|=2,则点 P 的坐标( )34A B C D)3,1( )1,3()3,1()3,1(7设四边形 ABCD 中,有 = ,且| |=| |,则这个四边形是D2ABA. 平行四边形 B. 矩形 C. 等腰梯形 D菱形 8 把函数 y=cosx 的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变) ,然后把图象向左平移 个单位,则所得图形对应的函数4解析式为( )A. B. C. D. )821cos(xy )42cos(xy )421cos(xy )2cos(xy9. 函数 是在( ) in,RA 上是增函数 B 上是减函数,0,C 上是减函数 D 上是减函数,0
3、 ,10.已知角 的终边过点 , ,则 的值是( mP34,0cosin2)A1 或1 B 或 C1 或 D1 或5255211. 下列命题正确的是( )A 若 = ,则 = B 若 ,则 =0 abcbc |baabC 若 / , / ,则 / D 若 与 是单位向量,则 a=1b12. 函数 f(x)=sin2xcos2x 是 ( )A 周期为 的偶函数 B 周期为 的奇函数 C 周期为 的偶函数 2D 周期为 的奇函数.2一、选择题(每小题 5 分,共 12 题,本题满分 60 分) 。二、填空题(每小题 4 分,共 4 题,本题满分 16 分) 。13已知点 A(2,4) ,B(6,2
4、) ,则 AB 的中点 M 的坐标为 ;14若 与 共线,则 ;)3,(a),(yby15若 ,则 = ;21tncos3sin16函数 的值域是 ;xysi y三、解答题(共 6 题,本题满分 74 分)16(本题满分 12 分)(1)已知 ,且 为第三象限角,求 的值(6 分)4cos5a=-asin a(2)已知 ,计算 的值. (6 分)3tni3cos52in417(本题满分 12 分)已知向量 , 的夹角为 , 且 , , ab60|2a|1b(1) 求 ; (6 分) (2) 求 .(6 分)|a1 2 3 4 5 6 7 8 9 10 11 1218. (本题满分 12 分)已
5、知 , ,当 为何值时,(12a3(bk(1) 与 垂直?(6 分)k(2) 与 平行?平行时它们是同向还是反向?(6 分)19.(本小题共 12 分)已知 ,且 是方程 的两根.0、 tan、 0652x求 的值.(6 分) 求 的值. (6 分)cos20(本题满分 12 分)已知 ,61)ba(23(,|b4,a与与(1)求 的值;(4 分) (2)求 的夹角 ;(4 分) (3)求 ba与的值 (4 分)与21 (本小题满分 14 分)已知函数 ,求22sini3cosyxx(1)函数的最小值及此时的 的集合。(8 分)(2)函数的单调减区间。(3 分)(3)此函数的图像可以由函数 的图像经过怎样变换而得到。2sinyx(3 分 )