1、精选高中模拟试卷第 1 页,共 14 页平阴县高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知数列a n满足 log3an+1=log3an+1(nN *),且 a2+a4+a6=9,则 log (a 5+a7+a9)的值是( )A B5 C5 D2 已知函数 f(x)=1+x + + ,则下列结论正确的是( )Af(x)在(0,1)上恰有一个零点 Bf(x)在(1,0)上恰有一个零点Cf(x)在(0,1)上恰有两个零点 Df (x)在( 1,0)上恰有两个零点3 已知函数 f(x)的图象如图,则它的一个可能的解析式为( )Ay=2 By=lo
2、g 3(x+1) Cy=4 Dy=4 设 nS是等比数列 na的前项和, 425S,则此数列的公比 q( )A-2 或-1 B1 或 2 C. 1或 2 D 2或-15 设函数 F(x)= 是定义在 R 上的函数,其中 f(x)的导函数为 f(x),满足 f(x)f (x)对于xR 恒成立,则( )Af(2)e 2f(0),f Bf(2)e 2f(0),fCf(2)e 2f(0),f Df (2)e 2f(0),f6 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于 P,直线 PF1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A B C D7 设 a 是函数 x 的零点,
3、若 x0a,则 f(x 0)的值满足( )Af(x 0)=0 Bf(x 0)0Cf(x 0)0 Df(x 0)的符号不确定精选高中模拟试卷第 2 页,共 14 页8 已知双曲线 =1(a0,b0)的渐近线与圆( x2) 2+y2=1 相切,则双曲线的离心率为( )A B C D9 设 a0,b0,若 是 5a与 5b的等比中项,则 + 的最小值为( )A8 B4 C1 D10设 a,b,c ,R +,则“abc=1”是“ ”的( )A充分条件但不是必要条件 B必要条件但不是充分条件C充分必要条件 D既不充分也不必要的条件11给出下列两个结论:若命题 p:x 0R,x 02+x0+10,则p:x
4、R,x 2+x+10;命题“若 m0,则方程 x2+xm=0 有实数根”的逆否命题为:“若方程 x2+xm=0 没有实数根,则 m0”;则判断正确的是( )A对错 B错对 C都对 D都错12函数 的最小正周期不大于 2,则正整数 k 的最小值应该是( )A10 B11 C12 D13二、填空题13S n= + + = 14递增数列a n满足 2an=an1+an+1,(nN *,n1),其前 n 项和为 Sn,a 2+a8=6,a 4a6=8,则 S10= 15设某双曲线与椭圆 有共同的焦点,且与椭圆相交,其中一个交点的坐标为3627yx,则此双曲线的标准方程是 .)4,15(16已知向量 满
5、足 , , ,则 与 的夹角为 . ba,42|b4)3()baab【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.17在极坐标系中,曲线 C1与 C2的方程分别为 2cos2=sin与 cos=1,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,则曲线 C1与 C2交点的直角坐标为 18圆心在原点且与直线 相切的圆的方程为_ .xy精选高中模拟试卷第 3 页,共 14 页【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题19某商场销售某种品牌的空调器,每周周初购进一定
6、数量的空调器,商场每销售一台空调器可获利 500 元,若供大于求,则每台多余的空调器需交保管费 100 元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润 200 元()若该商场周初购进 20 台空调器,求当周的利润(单位:元)关于当周需求量 n(单位:台,nN)的函数解析式 f(n);()该商场记录了去年夏天(共 10 周)空调器需求量 n(单位:台),整理得表:周需求量 n 18 19 20 21 22频数 1 2 3 3 1以 10 周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进 20 台空调器,X 表示当周的利润(单位:元),求 X 的分布列及数学期望20已知
7、函数 f(x)=|2x1|+|2x+a|,g(x)=x+3(1)当 a=2 时,求不等式 f( x)g(x)的解集;(2)设 a ,且当 x ,a时,f (x)g(x),求 a 的取值范围21已知三次函数 f(x)的导函数 f(x)=3x 23ax,f (0)=b,a、b 为实数(1)若曲线 y=f(x)在点(a+1,f(a+1)处切线的斜率为 12,求 a 的值;(2)若 f(x)在区间1,1上的最小值、最大值分别为 2、1,且 1a2,求函数 f(x)的解析式精选高中模拟试卷第 4 页,共 14 页22已知椭圆 x2+4y2=4,直线 l:y=x+m(1)若 l 与椭圆有一个公共点,求 m
8、 的值;(2)若 l 与椭圆相交于 P、Q 两点,且|PQ|等于椭圆的短轴长,求 m 的值23某滨海旅游公司今年年初用 49 万元购进一艘游艇,并立即投入使用,预计每年的收入为 25 万元,此外每年都要花费一定的维护费用,计划第一年维护费用 4 万元,从第二年起,每年的维修费用比上一年多 2 万元,设使用 x 年后游艇的盈利为 y 万元(1)写出 y 与 x 之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?24已知 f(x)=x 3+3ax2+3bx+c 在 x=2 处有极值,其图象在 x=1 处的切线与直线 6x+2y+5=0 平行(1)求函数的单调区间;(2)若 x1,3时
9、,f (x) 14c2恒成立,求实数 c 的取值范围精选高中模拟试卷第 5 页,共 14 页精选高中模拟试卷第 6 页,共 14 页平阴县高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:数列a n满足 log3an+1=log3an+1(nN *),an+1=3an0,数列 an是等比数列,公比 q=3又 a2+a4+a6=9, =a5+a7+a9=339=35,则 log (a 5+a7+a9)= =5故选;B2 【答案】B【解析】解:f(x)=1x+x 2x3+x2014=(1x)( 1+x2+x2012)+x 2014;f(x)0
10、 在( 1,0)上恒成立;故 f(x)在(1,0)上是增函数;又f(0)=1 ,f( 1)=11 0;故 f(x)在(1,0)上恰有一个零点;故选 B【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题3 【答案】C【解析】解:由图可得,y=4 为函数图象的渐近线,函数 y=2 ,y=log 3(x+1),y= 的值域均含 4,即 y=4 不是它们的渐近线,函数 y=4 的值域为(,4)(4,+ ),故 y=4 为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档精选高中模拟试卷第 7 页,共 14 页4 【答案】D【解析】试题分析:当公比 1q
11、时, 0524S,成立.当 1q时, 24,S都不等于,所以 4224qS, 2q,故选 D. 考点:等比数列的性质.5 【答案】B【解析】解:F(x)= ,函数的导数 F(x)= = ,f(x)f (x),F( x)0,即函数 F(x)是减函数,则 F(0)F(2),F (0) Fe 2f(0),f ,故选:B6 【答案】D【解析】解:设 F2为椭圆的右焦点由题意可得:圆与椭圆交于 P,并且直线 PF1(F 1为椭圆的左焦点)是该圆的切线,所以点 P 是切点,所以 PF2=c 并且 PF1PF 2又因为 F1F2=2c,所以PF 1F2=30,所以 根据椭圆的定义可得|PF 1|+|PF2|
12、=2a,所以|PF 2|=2ac所以 2ac= ,所以 e= 故选 D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义7 【答案】C【解析】解:作出 y=2x和 y=log x 的函数图象,如图:精选高中模拟试卷第 8 页,共 14 页由图象可知当 x0a 时,2 log x0,f(x 0)=2 log x00故选:C8 【答案】D【解析】解:双曲线 =1(a0,b0)的渐近线方程为 y= x,即 xy=0根据圆(x2) 2+y2=1 的圆心(2,0)到切线的距离等于半径 1,可得,1= , = ,可得 e= 故此双曲线的离心率为: 故选 D【点评】本题考查点到直线的距离
13、公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出 的值,是解题的关键9 【答案】B【解析】解: 是 5a与 5b的等比中项,精选高中模拟试卷第 9 页,共 14 页5a5b=( ) 2=5,即 5a+b=5,则 a+b=1,则 + =( + )(a+b) =1+1+ + 2+2 =2+2=4,当且仅当 = ,即 a=b= 时,取等号,即 + 的最小值为 4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意 1 的代换10【答案】A【解析】解:因为 abc=1,所以 ,则 = a+b+c当 a=3,b=2,c=1 时, 显然成立,但是 abc=61,所以
14、设 a,b,c ,R +,则“abc=1”是“ ”的充分条件但不是必要条件故选 A11【答案】C【解析】解:命题 p 是一个特称命题,它的否定是全称命题,p 是全称命题,所以正确根据逆否命题的定义可知 正确故选 C【点评】考查特称命题,全称命题,和逆否命题的概念12【答案】D【解析】解:函数 y=cos( x+ )的最小正周期不大于 2,T= 2,即|k| 4,则正整数 k 的最小值为 13精选高中模拟试卷第 10 页,共 14 页故选 D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键二、填空题13【答案】 【解析】解: = = ( ),Sn= + += (1 )+
15、( )+( )+ ( )= (1 )= ,故答案为: 【点评】本题主要考查利用裂项法进行数列求和,属于中档题14【答案】 35 【解析】解:2a n=an1+an+1,( nN *,n1),数列 an为等差数列,又 a2+a8=6,2a 5=6,解得:a 5=3,又 a4a6=(a 5d)(a 5+d)=9 d2=8,d2=1,解得:d=1 或 d=1(舍去)an=a5+(n5)1=3+ (n 5) =n2a1=1,S10=10a1+ =35故答案为:35【点评】本题考查数列的求和,判断出数列a n为等差数列,并求得 an=2n1 是关键,考查理解与运算能力,属于中档题15【答案】 1542x
16、y【解析】精选高中模拟试卷第 11 页,共 14 页试题分析:由题意可知椭圆 的焦点在 轴上,且 ,故焦点坐标为 由双曲13627yxy927362c3,0线的定义可得 ,故 , ,故所求双40540152a a542b曲线的标准方程为 故答案为: 42xy12xy考点:双曲线的简单性质;椭圆的简单性质16【答案】 3【解析】17【答案】 (1,2) 【解析】解:由 2cos2=sin,得:2 2cos2=sin,即 y=2x2由 cos=1,得 x=1联立 ,解得: 曲线 C1与 C2交点的直角坐标为(1,2)故答案为:(1,2)【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是
17、基础题18【答案】 2xy【解析】由题意,圆的半径等于原点到直线 的距离,所以 ,故圆的方程为2xy|02|rd.2xy三、解答题19【答案】 【解析】解:(I)当 n20 时,f(n)=500 20+200(n20)=200n+6000 ,当 n19 时,f(n)=500n100(20n)=600n2000,精选高中模拟试卷第 12 页,共 14 页 ( II)由(1)得 f(18)=8800,f(19)=9400,f (20)=10000,f(21)=10200,f (22)=10400 ,P( X=8800) =0.1,P (X=9400)=0.2,P(X=10000)=0.3,P(X=
18、10200 )=0.3,P(X=10400)=0.1,X 的分布列为X 8800 9400 10000 10200 10400P 0.1 0.2 0.3 0.3 0.1EX=88000.1+94000.2+100000.3+102000.3+104000.1=986020【答案】 【解析】解:(1)由|2x 1|+|2x+2|x+3,得: 得 x; 得 0x ; 得 综上:不等式 f(x)g(x)的解集为 (2)a , x ,a,f( x) =4x+a1由 f(x) g(x)得:3x 4a,即 x 依题意: ,a(, a 即 a1a 的取值范围是( ,121【答案】 【解析】解:(1)由导数的
19、几何意义 f(a+1)=12精选高中模拟试卷第 13 页,共 14 页3(a+1) 23a(a+1)=123a=9a=3(2)f (x) =3x23ax,f(0)=b由 f(x)=3x(xa)=0 得 x1=0,x 2=ax 1,1,1a 2当 x1,0)时,f(x)0,f(x)递增;当 x(0, 1时,f(x)0,f(x)递减f(x)在区间1,1上的最大值为 f(0)f(0)=b ,b=1 ,f( 1)f(1)f( 1)是函数 f(x)的最小值,f(x)=x 32x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为 0 的根与定义域的关系22【答案】 【解析】
20、解:(1)把直线 y=x+m 代入椭圆方程得:x 2+4(x+m) 2=4,即:5x 2+8mx+4m24=0,=(8m) 245(4m 24)=16m 2+80=0解得:m= (2)设该直线与椭圆相交于两点 A(x 1,y 1),B(x 2,y 2),则 x1,x 2是方程 5x2+8mx+4m24=0 的两根,由韦达定理可得:x1+x 2= ,x 1x2= ,|AB|= = =2;精选高中模拟试卷第 14 页,共 14 页m= 【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题23【答案】 【解析】解:(1) (xN *)6(2)盈利额为 当且仅当
21、即 x=7 时,上式取到等号11答:使用游艇平均 7 年的盈利额最大12【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题24【答案】 【解析】解:(1)由题意:f(x)=3x 2+6ax+3b 直线 6x+2y+5=0 的斜率为3;由已知 所以 (3 分)所以由 f(x) =3x26x0 得心 x0 或 x2;所以当 x(0,2)时,函数单调递减;当 x(,0),(2,+ )时,函数单调递增 (6 分)(2)由(1)知,函数在 x(1,2)时单调递减,在 x(2,3)时单调递增;所以函数在区间1,3有最小值 f(2)=c4 要使 x1,3,f(x)14c 2恒成立只需 14c2c 4 恒成立,所以 c 或 c1故 c 的取值范围是c|c 或 c1(12 分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题