1、,第四节,一、对面积的曲面积分的概念与性质,二、对面积的曲面积分的计算法,对面积的曲面积分,第十章,一、对面积的曲面积分的概念和性质,前面已经介绍了两类曲线积分,对第一类曲线积分,其物理背景是曲线型构件的质量,在此质量问题中若把曲线改为曲面,线密度改为面密度,小段曲线的弧长改为小块曲面的面积,相应地得和式,抽象概括得到对面积的曲面积分的概念,实例,所谓曲面光滑即曲面上各点处都有切平面,且当点在曲面上连续移动时,切平面也连续转动.,1.定义,其物理背景是面密度为 f ( x , y , z ) 的曲面块的质量,2.对面积的曲面积分的性质,由上述定义可知 其性质与对弧长的曲线积分的性质完全类似,)
2、线性性,)可加性,)存在性,曲面面积为,定理: 设有光滑曲面,f (x, y, z) 在 上连续,存在, 且有,二、对面积的曲面积分的计算法,则曲面积分,面积元素的计算,说明:,可有类似的公式.,1) 如果曲面方程为,代:将曲面的方程代入被积函数,换:换面积元,投影:将曲面投影到坐标面得投影区域,2) 简述为:一代、二换、三投影,注:,(1)这里积分曲面的方程必须是单值显函数,否则 可利用可加性,分块计算,结果相加;,(2)把曲面投影到哪一个坐标面,取决于曲面方程 即方程的表达形式;,(3)将曲面的方程代入被积函数的目的和意义是 把被积函数化为二元函数;,(4)切记任何时候都要换面积元.,例1
3、. 计算曲面积分,其中 是球面,被平面,截出的顶部.,解:,思考:,若 是球面,被平行平面 z =h 截,出的上下两部分,则,例2. 计算,其中 是由平面,坐标面所围成的四面体的表面.,解: 设,上的部分, 则,与,原式 =,分别表示 在平面,例1,解,例2 计算,与平面 z = 1 所围成的区域的整个边界曲面,解,在 xoy 内的投影区域,o,x,y,z,例3 计算,z = 0 与 z = H 之间的圆柱面,解,由对称性 有,例7. 计算,其中 是介于平面,之间的圆柱面,分析: 若将曲面分为前后(或左右),则,解: 取曲面面积元素,两片,则计算较繁.,注,对面积的曲面积分有类似与三重积分的对
4、称性,对称于xoy (或yoz ,或 zox )坐标面,若 f(x , y , z ) 关于z(或 x ,或 y )是奇函数,若 f(x , y , z ) 关于z(或 x ,或 y )是偶函数,完全类似于三重积分的对称性,例5 计算,解,例6,解,(左右两片投影相同),例8 求均匀曲面,的重心坐标,解,由对称性,故 重心坐标为,例9,解,例10 计算,解,由奇偶对称性,上半球面,下半球面,另解,由曲面形心公式,注,对面积的曲面积分的应用,面积,质量,重心,转动惯量,三、小结,1、 对面积的曲面积分的概念;,2、对面积的曲面积分的解法是将其化为投影域上的二重积分计算.,(按照曲面的不同情况分为三种),思考题,在对面积的曲面积分化为二重积分的公式中, 有因子 , 试说明这个因子的几何意义.,思考题解答,是曲面元的面积,故 是曲面法线与 轴夹角的余弦的倒数.,练 习 题,练习题答案,设曲面的方程为:,如图,,3。曲面的面积,曲面S的面积元素,设曲面的方程为:,曲面面积公式为:,设曲面的方程为:,曲面面积公式为:,同理可得,