收藏 分享(赏)

八年级数学下册 第二章 分解因式教案 北师大版.doc

上传人:精品资料 文档编号:8541642 上传时间:2019-07-02 格式:DOC 页数:17 大小:115KB
下载 相关 举报
八年级数学下册 第二章 分解因式教案 北师大版.doc_第1页
第1页 / 共17页
八年级数学下册 第二章 分解因式教案 北师大版.doc_第2页
第2页 / 共17页
八年级数学下册 第二章 分解因式教案 北师大版.doc_第3页
第3页 / 共17页
八年级数学下册 第二章 分解因式教案 北师大版.doc_第4页
第4页 / 共17页
八年级数学下册 第二章 分解因式教案 北师大版.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、用心 爱心 专心 1第二章分解因式2.1 分解因式知识与技能目标:1 使学生了解因式分解的意义。2 知道它与整式乘法在整式变形过程中的相反关系。过程与方法目标:1 通过观察,发现分解因式与整式乘法的关系。2 培养学生的观察能力和语言概括能力。情感态度与价值观目标:1 通过观察,推导分解因式与整式乘法的关系。2 让学生了解事物间的因果联系教学重点1理解因式分解的意义;2识别分解因式与整式乘法的关系教学难点通过观察,归纳分解因式与整式乘法的关系教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备有两个边长为 1 的正方形,剪刀.投影片两张:第一张:做一做(记作2.1.1A);第二

2、张:补充练习(记作2.1.1B).教学过程.创设问题情境,引入新课计算(ab)(ab)a2b2这是大家学过的平方差公式,我们是在整式乘法中学习的从式子(ab)(ab)a2b2 中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即 a2b2(ab)(ab)是否成立呢?a2b2(ab)(ab)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.讲授新课1讨论 99399 能被 100 整除吗?你是怎样想的?与同伴交流9399 能被 100 整除因为 99399999929999(9921)9998009998100,其中有一个因数为 100,所以 99399 能

3、被100 整除用心 爱心 专心 299399 还能被哪些正整数整除?(99,98,980,990,9702)从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式2议一议你能尝试把 a3a 化成 n 个整式的乘积的形式吗?与同伴交流大家可以观察 a3a 与 99399 这两个代数式a3aa(a21)a(a1)(a1)3做一做(1)计算下列各式:(m4)(m4)_;(y3)2_;3x(x1)_;m(abc)_;a(a1)(a1)_(2)根据上面的算式填空:3x23x( )( );m216( )( );mambmc( )( );y26y9( )2a3a( )( )能分析一下两个题

4、中的形式变换吗?在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式4想一想由 a(a1)(a1)得到 a3a 的变形是什么运算?由 a3a 得到a(a1)(a1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?总结一下:联系:等式(1)和(2)是同一个多项式的两种不同表现形式区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算所以,因式分解与整式乘法是相反方向的变形5例题下列各式从左到右的变形,哪些是因式分解?(1)4a(a2b)4a28ab;(2)6ax3ax2

5、3ax(2x);(3)a24(a2)(a2);(4)x23x2x(x3)2.课堂练习.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形用心 爱心 专心 3.课后作业见作业本六、活动与探究已知 a2,b3,c5,求代数式 a(abc)b(abc)c(cab)的值VI 板书设计2.1 分解因式一、1讨论 99399 能被 100 整除吗?2议一议 3做一做4想一想5例题讲解二、课堂练习三、课时小结用心 爱心 专心 42.2.1 提公因式法(一)知识与技能目标:1 让学生了解多项式公因式的意义。2 初步会用提公因式法分解因式。

6、过程与方法目标:1通过找公因式,培养学生的观察能力。情感态度与价值观目标:1 在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性。2 让学生养成独立思考的习惯,同时培养学生的合作交流意识。3 还能使学生初步感到因式分解在简化计算中将会起到很大的作用教学重点能观察出多项式的公因式,并根据分配律把公因式提出来教学难点让学生识别多项式的公因式教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果教具准备教学过程.创设问题情境,引入新课一块场地由三个矩形组成,矩形的长分别为 43, 2,7,宽都是 21,求这块场地的面积从两种不同的解答过程看,解法一是按运算顺序:先算乘,再

7、算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.讲授新课1公因式与提公因式法分解因式的概念若将刚才的问题一般化,即三个矩形的长分别为 a、b、c,宽都是 m,则这块场地的面积为 mambmc,或 m(abc),可以用等号来连接从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?由于 m 是左边多项式 mambmc 的各项 ma、mb、mc 的一个公共因式,因此 m 叫做这个多项式的各项的公因式用心 爱心 专心 5由上式可知,把多项式 mam

8、bmc 写成 m 与(abc)的乘积的形式,相当于把公因式 m 从各项中提出来,作为多项式 mambmc 的一个因式,把 m 从多项式 mambmc 各项中提出后形成的多项式(abc),作为多项式 mambmc 的另一个因式,这种分解因式的方法叫做提公因式法2例题讲解例 1 将下列各式分解因式:(1)3x6; (2)7x221x; (3)8a3b212ab3cabc; (4)24x312x228x分析:首先要找出各项的公因式,然后再提取出来3议一议通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤首先找各项系数的最大公约数,如 8 和 12 的最大公约数是 4其次找各项中含有的相同的字

9、母,如(3)中相同的字母有 ab,相同字母的指数取次数最低的4想一想从例 1 中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.课堂练习1写出下列多项式各项的公因式(1)mamb; (2)4kx8ky; (3)5y320y2; (4)a2b2ab2ab。2把下列各式分解因式(1)8x728(x9)(2)a2b5abab(a5)(3)4m36m22m2(2m3)(4)a2b5ab9bb(a25a9)(5)a2abac(a2abac)a(abc)(6)2x34x22x(2x34x22x)2x(x22x1)3把 3x26xyx

10、分解因式。 3x26xyxx(3x6y1)。将 x 写成 x1,这样可知提出一个因式 x 后,另一个因式是 1.课时小结1提公因式法分解因式的一般形式,如:mambmcm(abc)这里的字母 a、b、c、m 可以是一个系数不为 1 的、多字母的、幂指数大于 1 的单项式2提公因式法分解因式,关键在于观察、发现多项式的公因式3找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;用心 爱心 专心 6(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的(4)所有这些因式的乘积即为公因式4初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因

11、式,也要将它写成乘 1 的形式,这样可以防范错误,即漏项的错误发生5公因式相差符号的,如(xy)与(yx)要先统一公因式,同时要防止出现符号问题.课后作业利用分解因式计算:(1)3200432003; (2)(2)101(2)100VI 板书设计2.2.1 提公因式法(一)一、1公因式与提公因式法分解因式的概念2例题讲解(例 1)3议一议(找公因式的一般步骤)4想一想二、课堂练习(1随堂练习,2补充练习)三、课时小结用心 爱心 专心 72.2.2 提公因式法(二)知识与技能目标:1进一步让学生掌握用提公因式法分解因式的方法。过程与方法目标: 1进一步培养学生的观察能力和类比推理能力。情感态度与

12、价值观目标:通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式教学难点准确找出公因式,并能正确进行分解因式教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备教学过程.创设问题情境,引入新课上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.讲授新课1例题讲解例 2 把 a(x3)2b(x3)分解因式分析:这个多项式整体而言可分为两大项,即 a(x3)与 2b(x3),每项中都含有(x3)

13、,因此可以把(x3)作为公因式提出来例 3 把下列各式分解因式:(1)a(xy)b(yx); (2)6(mn)312(nm)2分析:虽然 a(xy)与 b(yx)看上去没有公因式,但仔细观察可以看出(xy)与(yx)是互为相反数,如果把其中一个提取一个“”号,则可以出现公因式,如 yx(xy)(mn)3 与(nm)2 也是如此2做一做请在下列各式等号右边的括号前填入“”或“”号,使等式成立:(1)2a_(a2);(2)yx_(xy);(3)ba_(ab);(4)(ba)2_(ab)2;用心 爱心 专心 8(5)mn_(mn);(6)s2t2_(s2t2).课堂练习1把下列各式分解因式:(1)x

14、(ab)y(ab);(2)3a(xy)(xy);(3)6(pq)212(qp);(4)a(m2)b(2m);(5)2(yx)23(xy);(6)mn(mn)m(nm)22补充练习把下列各式分解因式5(xy)310(yx)2;m(ab)n(ba)m(mn)n(nm);m(mn)n(mn)m(mn)(pq)n(nm)(pq);(ba)2a(ab)b(ba).课时小结本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.课后作业见作业本把(abc)(abc)(bac)(bac)分解因式参考练习把下列各式分解因式:

15、1a(xy)b(yx)c(xy);2x2y3xy2y3;32(xy)23(yx);45(mn)22(nm)3参考答案:1(xy)(abc);2y(x23xyy2);3(xy)(2x2y3);4(mn)2(52m2n)VI 板书设计2.2.2 提公因式法(二)一、1例题讲解2做一做二、课堂练习三、课时小结用心 爱心 专心 92.3.1 运用公式法(一)知识与技能目标:1使学生了解运用公式法分解因式的意义。2使学生掌握用平方差公式分解因式。3使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式。过程与方法目标:1通过对平方差公式特点的辨析,培养学生的观察能力。2训练学生对平

16、方差公式的运用能力。情感态度与价值观目标:1 在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。2 同时让学生了解换元的思想方法。教学重点让学生掌握运用平方差公式分解因式教学难点将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备教学过程.创设问题情境,引入新课在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式如果一个多项式的各

17、项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法公式法.讲授新课1请看乘法公式(ab)(ab)a2b2(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2b2(ab)(ab)(2)左边是一个多项式,右边是整式的乘积判断,第二个式子从左边到右边是否是因式分解?用心 爱心 专心 102公式讲解观察式子 a2b2,找出它的特点是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解

18、因式,分解成两个整式的和与差的积如 x216(x)242(x4)(x4);9m24n2(3m)2(2n)2(3m2n)(3m2n)。3例题讲解例 1 把下列各式分解因式:(1)2516x2; (2)9a2 41b2例 2 把下列各式分解因式:(1)9(mn)2(mn)2; (2)2x38x说明:例 1 是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例 2 的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例 2 的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑

19、公式法补充例题:判断下列分解因式是否正确(1)(ab)2c2a22abb2c2; (2)a41(a2)21(a21)(a21).课堂练习(一)随堂练习1判断正误(1)x2y2(xy)(xy);(2)x2y2(xy)(xy);(3)x2y2(xy)(xy);(4)x2y2(xy)(xy)2把下列各式分解因式(1)a2b2m2;(2)(ma)2(nb)2;(3)x2(abc)2;(4)16x481y4。3见课本。(二)补充练习把下列各式分解因式(1)36(xy)249(xy)2; (2)(x1)b2(1x); (3)(x2x1)21.课时小结用心 爱心 专心 11我们已学习过的因式分解方法有提公因

20、式法和运用平方差公式法如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.课后作业把(abc)(bccaab)abc 分解因式见作业本VI 板书设计2.3.1 运用公式法(一)一、1由整式乘法中的平方差公式推导因式分解中的平方差公式2公式讲解3例题讲解补充例题二、课堂练习三、课时小结用心 爱心 专心 122.3.2 运用公式法(二)知识与技能目标:1使学生会用完全平方公式分解因式。2使学生学习多步骤,多方法的分解因式。过程与方法目标:1在导出完全平方

21、公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力。情感态度与价值观目标:1通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力教学重点让学生掌握多步骤、多方法分解因式方法教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备教学过程.创设问题情境,引入新课因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(ab)(ab)a

22、2b2,而且还学习了完全平方公式(ab)2a22abb2。本节课,我们就要学习用完全平方公式分解因式.讲授新课1推导用完全平方公式分解因式的公式以及公式的特点由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?将完全平方公式倒写:a22abb2(ab)2;a22abb2(ab)2便得到用完全平方公式分解因式的公式什么样的多项式才可以用这个公式分解因式呢?互相交流,找出这个多项式的特点用心 爱心 专心 13左边的特点有:(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的 2 倍右边的特点:这两数或两式和(差)

23、的平方用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的 2倍,等于这两个数的和(或差)的平方形如 a22abb2 或 a22abb2 的式子称为完全平方式由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法练一练:下列各式是不是完全平方式?(1)a24a4;(2)x24x4y2;(3)4a22ab 41b2;(4)a2abb2;(5)x26x9;(6)a2a0.252例题讲解例 1 把下列完全平方式分解因式:(1)x214x49; (2)(mn)26(mn)9分析:大家先把多项式化成符合完全平方公式特点的形式,

24、然后再根据公式分解因式公式中的 a,b 可以是单项式,也可以是多项式例 2 把下列各式分解因式:(1)3ax26axy3ay2; (2)x24y24xy分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式如果三项中有两项能写成两数或式的平方,但符号不是“”号时,可以先提取“”号,然后再用完全平方公式分解因式.课堂练习a随堂练习b补充练习把下列各式分解因式:(1)4a24abb2;(2)a2b28abc16c2;(3)(xy)26(xy)9;(4)4(2ab)212(2ab)9;(5)m 6nn2;(6) 5

25、1x2yx4 102y。.课时小结这节课我们学习了用完全平方公式分解因式它与平方差公式不同之处是:(1)要求多项式有三项用心 爱心 专心 14(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的 2 倍,符号可正可负同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式.课后作业写出一个三项式,再把它分解因式(要求三项式含有字母 a 和 b,分数、次数不限,并能先用提公因式法,再用公式法分解因式见作业本VI 板书设计2.3.2 运用公式法(二)一、1推导用完全平方公式分解因式的公式以及公式的特点2例题讲解(例 1、例 2)二、课堂练习a随堂练习b补充

26、练习用心 爱心 专心 152.4 回顾与思考知识与技能目标:1复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式。2熟悉本章的知识结构图。过程与方法目标:1 通过知识结构图的教学,培养学生归纳总结能力。2 在例题的教学过程中培养学生分析问题和解决问题的能力情感态度与价值观目标:1 通过因式分解综合练习,提高学生观察、分析能力。2 通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识。教学重点复习综合应用提公因式法,运用公式法分解因式教学难点利用分解因式进行计算及讨论教学方法师生共同讨论法.教师引导,主要由学生分

27、组讨论得出结果.教具准备教学过程.创设问题情境,引入新课前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习今天,我们来综合总结一下.讲授新课(一)讨论推导本章知识结构图请大家先回忆一下我们这一章所学的内容有哪些?(1)有因式分解的意义,提公因式法和运用公式法的概念(2)分解因式与整式乘法的关系(3)分解因式的方法能否把本章的知识结构图绘出来呢?(若学生有困难,给予帮助)(二)重点知识讲解1举例说明什么是分解因式如 15x3y25x2y20x2y35x2y(3xy14y2)把多项式 15x3y25x2y20x2y3 分解成为因式 5x2y 与 3xy14y

28、2的乘积的形式,就是把多项式 15x3y25x2y20x2y3 分解因式学习因式分解的概念应注意以下几点:(1)因式分解是一种恒等变形,即变形前后的两式恒等用心 爱心 专心 16(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止2分解因式与整式乘法有什么关系?分解因式与整式乘法是两种方向相反的变形如:mambmcm(abc),从左到右是因式分解,从右到左是整式乘法3分解因式常用的方法有哪些?提公因式法和运用公式法4例题讲解例 1 下列各式的变形中,哪些是因式分解?哪些不是?说明理由(1)x23x4(x2)(x1)2;(2)6x2y33xy2xy2;(3)(3x2)(2x1)6x2x

29、2;(4)4ab2ac2a(2bc)。例 2 将下列各式分解因式(1)8a4b34a3b42a2b5;(2)9ab18a2b227a3b3;(3) 4 9x2;(4)9(x y)24(xy)2;(5)x425x2y2;(6)4x220xy25y2;(7)(ab)210c(ab)25c2例 3 把下列各式分解因式:(1)x7y3x3y3;(2)16x472x2y281y4。从上面的例题中,大家能否总结一下分解因式的步骤呢?分解因式的一般步骤为:(1)若多项式各项有公因式,则先提取公因式(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式(3)每一个多项式都要分解到不能再分

30、解为止.课堂练习1把下列各式分解因式(1)16a29b2;(2)(x24)2(x3)2;(3)4a29b212ab;(4)(xy)22510(xy)2利用因式分解进行计算(1)9x212xy4y2,其中 x 34,y 21;(2)(ba)2( 2)2,其中 a 8,b2.课时小结1共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解2利用因式分解简化某些计算用心 爱心 专心 17.课后作业复习题 A 组求满足 4x29y231 的正整数解VI 板书设计2.6 回顾与思考一、1讨论推导本章知识结构图2重点知识讲解(1)举例说明什么是因式分解(2)分解因式与整式乘法有什么关系?(3)分解因式常用的方法有哪些?(4)例题讲解(例 1、例 2、例 3)(5)分解因式的一般步骤二、课堂练习四、课后作业

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报