1、实验 19 RC 有源滤波器一、 实验目的1. 深刻理解 RC 有源滤波器的工作原理。2. 掌握有源滤波器的测量和调试技术。二 、实验原理滤波器是一种能使有用频率的信号通过而同时能对无用频率的信号进行抑制或衰减的电子装置。在工程上,滤波器常被用在信号的 处理、数据的 传送和干 扰的抑制等方面。滤波器按照组成的元件,可分为有源 滤波器和无源滤波器两大 类。凡是只由电阻、电容、电感等无源元件组成的滤波器称为无源滤波器。凡是由放大器等有源元件和无源元件 组成的滤波器称为有源滤波器。由运算放大器和 电阻、电容(不含电感) 组成的 滤波器称为 RC 有源滤波器。本实验只研究 RC 无源滤波器和 RC 有
2、源滤波器的特性以及它们之间的关系。RC 有源滤波器按照它所实现的传递函数的次数分,可分为一阶、二阶和高阶 RC 有源滤波器。从电路结构上看,一阶 RC 有源滤波器含有一个 电阻和一个电容。二阶 RC 有源滤波器含有二个电阻和二个电容。一般的高阶 RC 有源 滤波器可以由一阶和二阶的滤波器通过级联来实现。所以本实验 只研究一阶和二阶滤波器。重点研究二阶 RC 有源滤波器。滤波器按照所允许通过的信号的频率范围可分为低通滤波器、高通滤波器、 带通滤波器、带阻滤波器等。其中,低通滤 波器只允许低于某一频率的信号通过,而不允许高于该频率的信号通过。高通滤波器只允许 高于某一频率的信号通过而不允 许低于该
3、频率的信号通过。 带通滤波器只允许某一频率范围内的信号通过而不允许该频率范围以外的信号通过。带阻滤波器不允许(阻止)某一频率范围(频带)内的信号通过而只允许该频率范围以外的信号通过。本实验重点研究 RC 有源低通滤波器和带通滤波器。1一阶低通滤波器 图 1.19.1 (a)中虚线框内的电路是一个 RC 组成的一阶低通滤波器。它的传递函数为其中, 0=1 / 。为了提高增益并提高带负载能力,可以将上述 滤波电路接到由运算放大器 组成的放大电路中,从而组成有源滤波器。 图 1.19.1 (a) 就是将该电 路接到运算放大器的同相输入端所构成的一阶 RC 有源滤波器电路。对节点 A 列电压方程,可求
4、得该电路的传递函数为式中, 0=1+(F / 1) 是放大器的增益。图 1.19.1 (b) 是该电路的对数幅频特性曲线。由特性曲线可见,当工作频率 =0 时,图 1.19.1 一阶 RC 低通滤波器及其幅频特性(1.19.1)(1.19.2)增益下降 3 分贝。我们把与 0 对应的频率 称为滤波器的截止频率。并把 0 的频率范围称为滤波器阻带。也就是认为凡是频率低于 0 的信号都能顺利地通过该滤波器,而频率高于 0 的信号都被该滤波器衰减。从图 1.19.1 (b) 可见, 该电路对于 0 的信号的衰减速度为频率每变化 10 倍增益下降 20 分贝,即 -20dB /10 倍频程。一阶滤波电
5、路的缺点是滤波效果不好。在理想情况下,当 0 时,滤波电路的输出应该为零。而实际上,该电路对于 0 的信号,只以 20dB /10 倍频程的速度衰减。2二阶低通滤波器二阶低通波器比一阶滤波器具有更好的滤波效果。 图 1.19.2 (a) 是一个二阶 RC 低通滤波器。它实际上是在图 1.19.1 (a) 所示的一阶低通滤波器的基 础上增加了一级 RC 电路而组成的。在图 1.19.2 ( a )中,令两级 RC 电路的电阻值相等、电容值相等,并令 F = 1 (0 - 1)。其中, 0 = (1 + F / 1 ) 为 通频带内的电压放大倍数,分 别对电 路的节点 A 和节点 B 列写节点电压
6、方程为:解上述方程,可求得该电路的 电压传输函数为:其幅频特性曲线如图 1.19.2 (b) 所示。由图可见,在阻带内当频率每增大 10 倍时,电路的增益下降 40 分贝。比一 阶滤波器的滤波效果明显提高了。该电路的缺点是,当频率 =0时,电路的增益下降 为 9.5 dB。为了克服该电路在截止频率 0 附近增益下降过多的缺点,通常是将第一级 RC 电 路的电容 的接地端改接到运算放大器的输出端,如图 1.19.2 (a) 中虚 线部分所示。 这实际上是通过电容 在 0 附近引入了部分正反馈而对该频率范围内的电路增益进行了补偿。我 们将这种电路称为 改进的二阶低通滤波电路。采取 这种措施以后,电
7、路的幅频特性可能会在 =0 处出现峰值 。如图 1.19.2 (b) 中点划线所示。峰值的大小与电路的 Q 值 有关。改进的二阶低通滤电路的节点 A 和节点 B 的电压方程为:图 1.19.2 .二阶 RC 低通滤波器及其幅频特性(1.19.3)(1.19.4)由此求得该电路的电压传输函数为:3二阶高通滤波器图 1.19.3 (a) 是一个二阶高通 滤波器。图中虚线部分是一个无源二阶高通滤波电路。 为了提高它的 滤波性能和带负载的能力,将该无源网络接入由运放组成的放大电路中,组成二阶有源 RC 高通滤波器。采用与图 1.18.2 所示低通滤波电路相同的分析方法,可得图 1.19.3 (a) 所
8、示高通滤波电路的传递函数为:其中 0= 1 / ,Q = 1 /(3 0),0 = 1 +F / 1。该电路的幅频特性如图 1.19.3(b) 所示。4. 二阶带通滤波器典型的二阶带通滤波电路及其幅频特性曲线如图 1.19.4 所示。它的传递函数为其中带通滤波器的中心角频率 0、电路的品质因数 Q 和 电路的增益 0 分别为 (取 1=2=):带通滤波电路的 3dB 带宽可表示 为:(1.19.5)图 1.19.3 二阶高通滤波器及其幅频特性(1.19.6)(1.19.7)图 1.19.4 二阶带通滤波器及其幅频特性(1.19.8)(1.19.9)(1.19.10)(1.19.11)(1.19
9、.12)带通滤波器的中心角频率 0、品质因数 Q 和带宽 之间的关系为:在带通滤波器中,电路的品质 因数 Q 值具有特殊的意义,它是衡量这个电路选择性的重要参数。在实验中,可以通过测出带通滤器的中心角频率 0 (最高增益所对应的角频率)和 3dB 带宽 (电路的增益由最大值下降 3dB 所对应的角 频 率 H 和 L 之差) ,从而由式 (1.19.13) 求出。5. 二阶带阻滤波器二阶带阻滤波器传递函数的标准表示式为从原理上来讲,带阻滤波器可以通 过“ 带通相减”的方法来实现。用数学式子来表示为:1带通 = 带阻 在式 (1.19.8) 所示的带通滤波函数中,若令 0=1,则由式 (1.19
10、.15) 可得:可见,通过“带 通相减”的方法确实能够实现一个带阻滤波器。采用这种实现方法并利用图 1.19.4 (a) 结构的带通电路 实现的带阻滤波电路如图 1.19.5 所示。注意:上图中为了使带通电路的 0 = 1,电阻的取值应满足 1 =2 = 3 的条件。三、实验内容及步骤(一) 低通滤波器实验1. 按照图 1.19.1 (a) 所示电路 ,在面包板上插接一 阶 RC 低通滤波器。2. 用逐点法测量电路的幅频特性。在中心 频率 0 附近各 测 10 个点。以表格的形式记录测量结果。并在半对数坐标纸 上绘出其幅频特性曲线。3. 按照图 1.19.2 (a) 实线所示 电路, 在面包板
11、上插接二阶 RC 低通滤波器。4. 用逐点法测 量电路的幅频特性。按照第 2 步的要求进行测量,在同一表格中进行记录,并在同一坐标中绘出如图 1.19.2 (b) 所示的幅频特性曲线(根据需要可多测几个点)。5. 将实验结果与理论进行比较。(二) 带通滤波器实验1. 按照图 1.19.4 (a) 所示电路,在面包板上插接二阶 RC 带通滤波电路。2. 用逐点法测 量电路的幅频 特性曲线。在中心 频率附近各测 15 个点。注意,在曲线变化剧烈部分应多测几个点,并必 须找到 3dB 频率 H 和 L。以表格的形式 记录测量结果,(1.19.13)(1.19.14)(1.19.15)(1.19.16)图 1.19.5 二阶带阻滤波器在半对数坐标纸上绘出幅频特性曲线。3. 根据测量结果,找出该电路的 0、H 和 L 。确定带宽 。并根据式 (1.19.13) 求出该电路的品质因数 Q。将上述 结果与理论值进行比较。四、实验仪器及设备1. 双踪示波器 1 台2. 晶体管毫伏表 1 台3. 低频信号发生器 1 台4. 直流稳压电源 1 台5. 万用表 1 块五、实验报告要求1. 自己设计表格,整理并在表格中 记录有关实验数据。2. 根据实验数据,绘制有关的特性曲 线。 标出主要数据。3. 将实验结果与理论值进行比较。分析 产生偏差的主要原因并提出 调整的措施。