1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)南京市高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知双曲线 =1 的右焦点与抛物线 y2=12x 的焦点重合,则该双曲线的焦
3、点到其渐近线的距离等于( )A B C3 D52 为得到函数 的图象,只需将函数 y=sin2x 的图象( )A向左平移 个长度单位 B向右平移 个长度单位C向左平移 个长度单位 D向右平移 个长度单位3 已知双曲线 的渐近线与圆 x2+(y2) 2=1 相交,则该双曲线的离心率的取值范围是( )A( ,+) B(1, ) C(2+) D(1,2)4 直线 l 将圆 x2+y22x+4y=0 平分,且在两坐标轴上的截距相等,则直线 l 的方程是( )Axy+1=0,2xy=0 Bx y1=0,x2y=0Cx+y+1=0 , 2x+y=0 Dx y+1=0,x+2y=05 设数列a n的前 n
4、项和为 Sn,若 Sn=n2+2n(nN *),则 + + =( )A B C D6 若定义在 R 上的函数 f(x)满足 f(0)= 1,其导函数 f(x)满足 f(x)k1,则下列结论中一定错误的是( )A B C D7 若集合 A=x|2x1,B=x|0x2 ,则集合 AB=( )Ax|1x 1 Bx| 2 x1 Cx| 2x2 Dx|0x18 年 月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取063名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为 , , ,按分2 3501层抽样的方法,应从青年职工中抽取的人数为( )A. B. C.
5、 D.5710由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实
6、验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【命题意图】本题主要考查分层抽样的方法的运用,属容易题.9 在下列区间中,函数 f( x)= ( ) xx 的零点所在的区间为( )A(0,1) B(1,2) C(2
7、,3 ) D(3,4)10 分别是 的中线,若 ,且 与 的夹角为 ,则 =( ),DEA1ABEABE120ABC(A) ( B ) (C) (D ) 39238911若复数(2+ai) 2(aR)是实数(i 是虚数单位),则实数 a 的值为( )A2 B2 C0 D212函数 f(x)=x 2x2,x5,5,在定义域内任取一点 x0,使 f(x 0)0 的概率是( )A B C D二、填空题13直线 l 过原点且平分平行四边形 ABCD 的面积,若平行四边形的两个顶点为 B(1,4),D (5,0),则直线 l 的方程为 14已知 满足 ,则 的取值范围为_.,xy41x223yx15在棱
8、长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥后,剩下的凸多面体的体积是 16已知 ,则不等式 的解集为_,0()xef=【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力17给出下列命题:把函数 y=sin(x )图象上所有点的横坐标缩短到原来的 倍,纵坐标不变,得到函数y=sin(2x );若 , 是第一象限角且 ,则 coscos ;x= 是函数 y=cos(2x+ )的一条对称轴;函数 y=4sin(2x+ )与函数 y=4cos(2x )相同;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影
9、,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完
10、全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)y=2sin(2x )在是增函数;则正确命题的序号 18等比数列a n的前 n 项和 Snk 1k 22n(k 1,k 2 为常数),且 a2,a 3,a 42 成等差数列,则an_三、解答题19【盐城中学 2018 届高三上第一次阶段性考试
11、】已知函数 f(x)=(2a)(x1)2lnx,g(x)=(aR,e 为自然对数的底数)1x()当 a=1 时,求 f(x)的单调区间;()若函数 f(x)在 上无零点,求 a 的最小值;10,2()若对任意给定的 x0( 0,e,在(0,e上总存在两个不同的 xi(i=1 ,2),使得 f(x i)=g(x 0)成立,求 a 的取值范围20设函数 ,若对于任意 x1,2都有 f(x)m 成立,求实数 m 的取值范围21如图,M、N 是焦点为 F 的抛物线 y2=2px(p0)上两个不同的点,且线段 MN 中点 A 的横坐标为,(1)求|MF|+|NF|的值;由于玻璃板的两面间具有一定的厚度,
12、而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目
13、的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(2)若 p=2,直线 MN 与 x 轴交于点 B 点,求点 B 横坐标的取值范围22已知数列a n满足 a1= , an+1=an+ ,数列b n满足 bn=()证明:b n(0,1)()证明: =()证明:对任
14、意正整数 n 有 an 23定义在 R 上的增函数 y=f(x)对任意 x,yR 都有 f(x+y)=f(x)+f(y),则(1)求 f(0); (2)证明:f(x)为奇函数;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛
15、 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(3
16、)若 f(k3 x)+f(3 x9x2)0 对任意 xR 恒成立,求实数 k 的取值范围24(本题满分 12 分) 已知数列a n满足 a1=1,a n+1=2an+1(1)求数列a n的通项公式;(2)令 bn= n(a n+1),求数列b n的前 n 项和 Tn由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛
17、A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,
18、利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)南京市高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:抛物线 y2=12x 的焦点坐标为(3,0)双曲线 的右焦点与抛物线 y2=12x 的焦点重合4+b 2=9b 2=5双曲线的一条渐近线方程为 ,即双曲线的焦点到其渐近线的距离等于故选 A【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键2 【答案】A【解析】解: ,只需将函数 y=sin2x 的图象向左平移 个单位得到函数 的图象故选 A【点评】本题主要考查诱导公式和
19、三角函数的平移属基础题3 【答案】C【解析】解:双曲线渐近线为 bxay=0,与圆 x2+(y2 ) 2=1 相交圆心到渐近线的距离小于半径,即 13a 2b 2,c 2=a2+b24a 2,e= 2故选:C【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等考查了学生数形结合的思想的运用由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_
20、。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运
21、动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)4 【答案】C【解析】解:圆 x2+y22x+4y=0 化为:圆(x 1) 2+(y+2) 2=5,圆的圆心坐标(1, 2),半径为 ,直线 l将圆x2+y22x+4y=0 平分,且在两坐标轴上的截距相等,则直线 l 经过圆心与坐标原点或者直线经过圆心,直线的斜率为1,直线 l 的方程是:y+2=(x1),2x+y=0,即 x+y+1=0, 2x+y=0故选:C【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题5 【答案】D【
22、解析】解:S n=n2+2n(n N*),当 n=1 时,a 1=S1=3;当 n2 时,a n=SnSn1=(n 2+2n)(n1)2+2(n 1)=2n+1 = = , + + = + += 故选:D【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题6 【答案】C【解析】解;f(x)=f(x)k1, k1,即 k1,当 x= 时,f( )+1 k= ,即 f( ) 1=由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡
23、烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的
24、同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故 f( ) ,所以 f( ) ,一定出错,故选:C7 【答案】D【解析】解:AB=x| 2x1x|0x2=x|0x1故选 D8 【答案】C9 【答案】A【解析】解:函数 f(x)=( ) xx,可得 f(0)=10,f(1)= 0f(2)= 0,函数的零点在(0,1)故选:A10【答案】C【解析】 由 解得1(),2ADBCEA23,4BADE.4()()33BCE
25、11【答案】C【解析】解:复数(2+ai) 2=4a 2+4ai 是实数,4a=0,解得 a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题12【答案】C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏
26、代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位
27、置)【解析】解:f(x)0x 2x201x2,f(x 0)01 x02,即 x01,2,在定义域内任取一点 x0,x 05,5,使 f(x 0)0 的概率 P= =故选 C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键二、填空题13【答案】 【解析】解:直线 l 过原点且平分平行四边形 ABCD 的面积,则直线过 BD 的中点(3,2),故斜率为 = ,由斜截式可得直线 l 的方程为 ,故答案为 【点评】本题考查直线的斜率公式,直线方程的斜截式14【答案】 2,6【解析】由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择
28、_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛
29、在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1) 表示点2xy与原点 的距离;(2) 表示点 与点 间的
30、距离;(3) 可表示,xy0,22xayb,xy,ab点 与 点连线的斜率;(4) 表示点 与点 连线的斜率.,15【答案】 【解析】解:在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥,8 个三棱锥的体积为: = 剩下的凸多面体的体积是 1 = 故答案为: 【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力16【答案】 (2,1)-【解析】函数 在 递增,当 时, ,解得 ;当 时, ,fx0+0x20x-解得 ,综上所述,不等式 的解集为 02()(ff-(,1)17【答案】 【解析】解:对于,把函数 y=sin(x )图
31、象上所有点的横坐标缩短到原来的 倍,纵坐标不变,得到函数 y=sin(2x ),故正确由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐
32、远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)对于,当 , 是第一象限角且 ,如 =30,=390,则此时有 cos=cos= ,故错误对于
33、,当 x= 时,2x+ = ,函数 y=cos(2x+ )= 1,为函数的最小值,故 x= 是函数 y=cos(2x+ )的一条对称轴,故正确对于,函数 y=4sin(2x+ )=4cos (2x+ )=4cos( 2)=4cos(2x ),故函数 y=4sin(2x+ )与函数 y=4cos(2x )相同,故正确对于,在上,2x ,函数 y=2sin(2x )在上没有单调性,故错误,故答案为:18【答案】【解析】当 n1 时,a 1S 1k 12k 2,当 n2 时,a nS nS n1 (k 1k 22n)(k 1k 22n1 )k 22n1 ,k12k 2k 220,即 k1k 2 0,
34、又 a2,a 3,a 42 成等差数列2a3a 2a 42,即 8k22k 28k 22.由联立得 k11,k 21,an2 n1 .答案:2 n1三、解答题19【答案】(1) f(x)的单调减区间为(0,2,单调增区间为2 ,+);(2) 函数 f(x)在 10,2上无零点,则 a 的最小值为 24ln2;(3)a 的范围是 .3,1e【解析】试题分析:()把 a=1 代入到 f(x)中求出 f(x),令 f(x)0 求出 x 的范围即为函数的增区间,令 f(x)0 求出 x 的范围即为函数的减区间;()f(x)0 时不可能恒成立,所以要使函数在( 0, )上无零点,只需要对 x(0, )时
35、 f(x)2120 恒成立,列出不等式解出 a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到 a 的最小值;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不
36、能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)试题解析:(1)当 a=1 时,
37、f(x)=x12lnx,则 f(x)=1 ,由 f(x)0,得 x2;由 f(x)0,得 0x2 故 f(x)的单调减区间为(0 ,2 ,单调增区间为2,+ );(2)因为 f(x)0 在区间 上恒成立不可能,故要使函数 上无零点,只要对任意的 ,f(x)0 恒成立,即对 恒成立令 ,则 ,再令 ,则 ,故 m(x)在 上为减函数,于是 ,从而,l(x)0,于是 l(x)在 上为增函数,所以 ,故要使 恒成立,只要 a24ln2,+ ),综上,若函数 f(x)在 上无零点,则 a 的最小值为 24ln2;10,2(3)g(x)=e 1xxe1x=(1 x)e 1x,当 x(0,1)时,g(x)
38、0,函数 g(x)单调递增;当 x(1,e 时,g(x)0,函数 g(x)单调递减又因为 g(0)=0,g(1)=1,g(e)=ee 1e0,所以,函数 g(x)在(0,e上的值域为(0,1 当 a=2 时,不合题意;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜
39、所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像
40、的光路图。(D 点为小明眼睛所在位置)当 a2 时,f (x)= ,x(0,e当 x= 时,f(x)=0 由题意得,f(x)在(0,e上不单调,故 ,即 此时,当 x 变化时,f(x), f(x)的变化情况如下:x (0, ) ( ,ef(x) 0 +f(x) 最小值 又因为,当 x0 时,2a0,f(x)+,所以,对任意给定的 x0(0,e,在(0,e上总存在两个不同的 xi(i=1,2),使得 f(x i)=g(x 0)成立,当且仅当 a 满足下列条件:即令 h(a)= ,则 h ,令 h(a )=0 ,得 a=0 或 a=2,故当 a(,0)时,h( a)0,函数 h(a)单调递增;当
41、时,h(a)0,函数 h(a)单调递减所以,对任意 ,有 h(a)h(0)=0,即对任意 恒成立由式解得: 综合可知,当 a 的范围是 时,对任意给定的 x0(0,e,在(0,e上总存在两个不同3,21e的 xi(i=1,2),使 f(x i)=g(x 0)成立由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A
42、的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)20【答案】 【解析】解: ,f(x)=3x 2x2=(3x+2)(x1),当 x