1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)云溪区高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 设集合 M=x|x2+3x+20 ,集合 ,则 MN=( )Ax|x2 Bx
3、|x 1 Cx|x 1 Dx|x 22 我国古代名著九章算术用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”当输入 a6 102,b2 016 时,输出的 a 为( )A6B9C12D183 定义集合运算:A*B=z|z=xy,xA,yB设 A=1,2 ,B=0,2,则集合 A*B 的所有元素之和为( )A0 B2 C3 D64 (2015 秋新乡校级期中)已知 x+x1=3,则 x2+x2 等于( )A7 B9 C11 D135 过点 , 的直线的斜率为 ,则 ( )),2(aM)4,(N2|MNA
4、 B C D10803656由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“
5、变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)6 已知 F1,F 2 是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且F 1MF2= ,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2 B
6、C D47 阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于 20,则输入的整数 i 的最大值为( )A3 B4 C5 D68 已知集合 ,且 使 中元素 和 中的元421,23,73kBa*,aNxAyB31yxA素 对应,则 的值分别为( )xaA B C D2,3,4,5,9 在等差数列a n中,3( a3+a5)+2 (a 7+a10+a13)=24,则此数列前 13 项的和是( )A13 B26 C52 D5610设 m,n 表示两条不同的直线, 、 表示两个不同的平面,则下列命题中不正确的是( )Am ,m ,则 Bm n, m,则 nCm,n ,则 mn Dm
7、 , =n,则 mn11在正方体 ABCDABCD中,点 P 在线段 AD上运动,则异面直线 CP 与 BA所成的角 的取值范围是( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光
8、屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)A0 B0 C0 D012已知抛物线 C:
9、的焦点为 F,准线为 ,P 是 上一点,Q 是直线 PF 与 C 的一个交点,若yx82ll,则 ( )FQP2A6 B3 C D3834第卷(非选择题,共 100 分)二、填空题13如图,ABC 是直角三角形,ACB=90,PA平面 ABC,此图形中有 个直角三角形14若执行如图 3 所示的框图,输入 ,则输出的数等于 。15长方体 中,对角线 与棱 、 、 所成角分别为 、 、,1ABCD1ACBD1C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的
10、蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座
11、的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)则 222sinisin16已知直线 l 的参数方程是 (t 为参数),曲线 C 的极坐标方程是 =8cos+6sin,则曲线 C 上到直线 l 的距离为 4 的点个数有 个17对于|q| 1 (q 为公比)的无穷等比数列 an(即项数是无穷项),我们定义 Sn(其中 Sn 是数列a n的前 n 项的和)为它的各项的和,记为 S,即 S= Sn= ,则循环小数 0.
12、的分数形式是 18函数 f(x)=log (x 22x3)的单调递增区间为 三、解答题19(本小题满分 12 分)已知圆 与圆 : 关于直线 对称,且点 在圆 上.MN22)35()(ryxxy)35,1(DM(1)判断圆 与圆 的位置关系; (2)设 为圆 上任意一点, , , 三点不共线, 为 的平分线,且P),1(A),(BBAP、 PGAB交 于 . 求证: 与 的面积之比为定值.ABGBPG20一个几何体的三视图如图所示,已知正(主)视图是底边长为 1 的平行四边形,侧(左)视图是一个长为 ,宽为 1 的矩形,俯视图为两个边长为 1 的正方形拼成的矩形3(1)求该几何体的体积 ;11
13、1V(2)求该几何体的表面积 S由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”
14、或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)21已知函数 f(x)=|2x+1| ,g(x)=|x|+a()当 a=0 时,解不等式 f(x)g(x);()若存在 xR,使得 f( x) g(
15、x)成立,求实数 a 的取值范围22某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数 x(个) 2 3 4 5加工的时间 y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出 y 关于 x 的线性回归方程 = x+ ,并在坐标系中画出回归直线;(3)试预测加工 10 个零件需要多少时间?由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_
16、(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻
17、璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)参考公式:回归直线 =bx+a,其中 b= = ,a= b 23已知函数 f(x)=cos( x+ ),(0,0),其中 xR 且图象相邻两对称轴之间的距离为 ;(1)求 f(x)的对称轴方程和单调递增区间;(2)求 f(x)的最大值、最小值,并指出 f(x)取得最大值、最小值时所对应的 x 的集合由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻
18、璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现
19、无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)24(本小题满分 12 分)已知圆 ,直线22:15Cxy.:21740LmxymR(1)证明: 无论 取什么实数 , 与圆恒交于两点;L(2)求直线被圆 截得的弦长最小时 的方程.由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”)
20、玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发
21、现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)云溪区高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:集合 M=x|x2+3x+20=x|2x1,集合 =x|2x22=x|x2=x|x2,MN=x|x 2,故选 A【点评】本题考查集合的运算,解题时要认真审题,仔细解答2
22、 【答案】【解析】选 D.法一:6 102 2 016354,2 016543718,54183,18 是 54 和 18 的最大公约数,输出的 a18,选 D.法二:a6 102,b2 016,r54,a2 016,b54,r18,a54,b18,r0.输出 a18,故选 D.3 【答案】D【解析】解:根据题意,设 A=1,2,B=0,2 ,则集合 A*B 中的元素可能为:0、2、0、4,又有集合元素的互异性,则 A*B=0,2,4,其所有元素之和为 6;故选 D【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍4 【答案】A【解析】解:x+x 1=3,则 x2+
23、x2=(x+x 1) 22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题5 【答案】 D由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡
24、烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】考点:1.斜率;2.两点间距离.6 【答案】
25、C【解析】解:设椭圆的长半轴为 a,双曲线的实半轴为 a1,(aa 1),半焦距为 c,由椭圆和双曲线的定义可知,设|MF 1|=r1,|MF 2|=r2,|F 1F2|=2c,椭圆和双曲线的离心率分别为 e1,e 2F 1MF2= ,由余弦定理可得 4c2=(r 1) 2+(r 2) 22r1r2cos ,在椭圆中,化简为即 4c2=4a23r1r2,即 = 1,在双曲线中,化简为即 4c2=4a12+r1r2,即 =1 ,联立得, + =4,由柯西不等式得(1+ )( + )(1 + ) 2,即( + ) 2 4= ,即 + ,当且仅当 e1= ,e 2= 时取等号即取得最大值且为 故选
26、C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改
27、变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大7 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件 ni,s=2
28、,n=1满足条件 ni,s=5,n=2满足条件 ni,s=10,n=3满足条件 ni,s=19,n=4满足条件 ni,s=36,n=5所以,若该程序运行后输出的结果不大于 20,则输入的整数 i 的最大值为 4,有 n=4 时,不满足条件 ni,退出循环,输出 s 的值为 19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题8 【答案】D【解析】试题分析:分析题意可知:对应法则为 ,则应有 (1)或31yx423ak(2),由于 ,所以(1)式无解,解(2)式得: 。故选 D。4231ak*aN25a考点:映射。9 【答案】B【解析】解:由等差数列的性质可得:a 3+a5=2a4,
29、a 7+a13=2a10,代入已知可得 32a4+23a10=24,即 a4+a10=4,故数列的前 13 项之和 S13= = =26故选 B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题10【答案】D由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了
30、研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛
31、 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:A 选项中命题是真命题, m ,m,可以推出 ;B 选项中命题是真命题,mn,m 可得出 n ;C 选项中命题是真命题,m ,n,利用线面垂直的性质得到 nm;D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行故选 D【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理11【答案】D【解析】解:A 1BD 1C,CP 与 A1B 成角可化为 CP 与 D1C 成角AD 1C 是正三角形可知当 P 与 A 重合时成角为 ,P 不能与 D1 重合因为此时 D1C 与 A1B 平行而不是异
32、面直线,0 故选:D12【答案】A 解析:抛物线 C: 的焦点为 F(0,2),准线为 :y=2,yx82l设 P(a,2), B(m, ),则 =(a ,4), =(m , 2), ,2m= a,4= 4,m 2=32,由抛物线的定义可得|QF|= +2=4+2=6故选 A二、填空题13【答案】 4 【解析】解:由 PA平面 ABC,则PAC ,PAB 是直角三角形,又由已知ABC 是直角三角形,ACB=90所以 BCAC ,从而易得 BC平面 PAC,所以 BCPC ,所以PCB 也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB ,ABC,PCB由于玻璃板的两面间具有一定的厚
33、度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验
34、的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键14【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则 。15【答案
35、】【解析】试题分析:以 为斜边构成直角三角形: ,由长方体的对角线定理可得:1AC111,ACDBA.222221sinisinB22()考点:直线与直线所成的角【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键16【答案】 2 【解析】解:由 ,消去 t 得:2x y+5=0,由 =8cos+6sin,得 2=8cos+6sin,即 x2+y2=8x+6y,
36、化为标准式得(x4) 2+(y3) 2=25,即 C 是以(4,3)为圆心,5 为半径的圆又圆心到直线 l 的距离是 ,故曲线 C 上到直线 l 的距离为 4 的点有 2 个,故答案为:2由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用
37、光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所
38、在位置)【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题17【答案】 【解析】解:0. = + += = ,故答案为: 【点评】本题考查数列的极限,考查学生的计算能力,比较基础18【答案】 (, 1) 【解析】解:函数的定义域为x|x3 或 x1令 t=x22x3,则 y=因为 y= 在(0,+ )单调递减t=x22x3 在(, 1)单调递减,在( 3,+ )单调递增由复合函数的单调性可知函数的单调增区间为(, 1)故答案为:(, 1)三、解答题19【答案】(1)圆与圆相离;(2)定值为 2.【解析】试题分析:(1)若两圆关于直线对
39、称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆 M 的圆心,,然后根据圆心距 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点 G 到 AP 和DMrNBP 的距离相等,所以两个三角形的面积比值 ,根据点 P 在圆 M 上,代入两点间距离公式求ABSPG和 ,最后得到其比值.PBA试题解析:(1) 圆 的圆心 关于直线 的对称点为 ,)35,(xy)35,(由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是
40、_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将
41、玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置) ,916)34(|222MDr圆 的方程为 .916)35(2yx ,圆 与圆 相离.80)130(| 2rNMN考点:1.圆与圆的位置关系;2.点与圆的位置关系.120【答案】(1) ;(2) 363【解析】(2)由三视图可知,该平行六面体中 平面 , 平面 ,1ADBCD1BC ,侧面 , 均为矩形,111(32)63S由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_
42、(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为