1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)伊春市高中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中
3、的信息,可确定被抽测的人数及分数在 内的人数分别为( )90,1A20,2 B24,4 C25,2 D25,42 =( )Ai Bi C1+i D1 i3 函数 的最小正周期不大于 2,则正整数 k 的最小值应该是( )A10 B11 C12 D134 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数 y=x 的图象是( )A B C D5 已知棱长为 1 的正方体的俯视图是一个面积为 1 的正方形,则该正方体的正视图的面积不可能是( )A1 B C D6 集合 U=R,A=x|x 2x20,B=x|y=ln (1x),则图中阴影部分表示的集合是( )由于玻璃板的两面间具有一定的
4、厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实
5、验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)Ax|x1 Bx|1 x2 Cx|0x 1 Dx|x17 直线 x+y1=0 与 2x+2y+3=0 的距离是( )A B C D8 圆 上的点到直线 的距离最大值是( )0122yx2yxA B C D 1
6、9 设 D、E、F 分别是ABC 的三边 BC、CA、AB 上的点,且 =2 , =2 , =2 ,则与 ( )A互相垂直 B同向平行C反向平行 D既不平行也不垂直10设 m 是实数,若函数 f(x)=|xm|x1| 是定义在 R 上的奇函数,但不是偶函数,则下列关于函数f(x)的性质叙述正确的是( )A只有减区间没有增区间 B是 f(x)的增区间Cm=1 D最小值为 311命题“xR,使得 x21 ”的否定是( )AxR ,都有 x21 Bx R,使得 x21CxR,使得 x21 DxR ,都有 x1 或 x112下列图象中,不能作为函数 y=f(x)的图象的是( )由于玻璃板的两面间具有一
7、定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进
8、行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)A B CD二、填空题13已知 是第四象限角,且 sin(+ )= ,则 tan( )= 14已知条件 p:x|xa|3,条件 q:x|x 22x30,且 q 是 p 的充分不必要条件,则 a 的取值范围
9、是 15以点(1,3)和(5,1 )为端点的线段的中垂线的方程是 16方程 有两个不等实根,则的取值范围是 243xk17设 f(x)是(x 2+ ) 6 展开式的中间项,若 f(x)mx 在区间 , 上恒成立,则实数 m 的取值范围是 18函数 y=f(x)的图象在点 M(1,f (1)处的切线方程是 y=3x2,则 f(1)+f(1)= 三、解答题19ABC 中,角 A,B,C 所对的边之长依次为 a,b,c ,且 cosA= ,5(a 2+b2c2)=3 ab()求 cos2C 和角 B 的值;()若 ac= 1,求ABC 的面积由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止
10、重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一
11、支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)20解关于 x 的不等式 12x2axa 2(aR)21已知二次函数 f(x)=x 2+2bx+c(b,c R)(1)若函数 y=f(x)的零点为1 和 1,求实数 b,c 的值;(2)若 f(x)满足 f(1)=0,且关于 x 的方程
12、f(x)+x+b=0 的两个实数根分别在区间(3,2),(0,1)内,求实数 b 的取值范围由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A
13、 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)22如图 1,在 RtABC 中,C=90,BC=3,AC=6,D、E 分别是 AC、A
14、B 上的点,且 DEBC,将ADE 沿 DE 折起到 A 1DE 的位置,使 A1DCD,如图 2()求证:平面 A1BC平面 A1DC;()若 CD=2,求 BD 与平面 A1BC 所成角的正弦值;()当 D 点在何处时,A 1B 的长度最小,并求出最小值23(本小题满分 12 分)一个盒子里装有编号为 1、2、3、4、5 的五个大小相同的小球,第一次从盒子里随机抽取 2 个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取 2 个小球,记下球的编号()求第一次或第二次取到 3 号球的概率;()设 为两次取球时取到相同编号的小球的个数,求 的分布列与数学期望 24(本小题满分 1
15、2 分)某校为了解高一新生对文理科的选择,对 1 000 名高一新生发放文理科选择调查表,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A
16、逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)统计知,有 600 名学生选择理科,400 名学生选择文科分别从选择理科和文科的学生随机各
17、抽取 20 名学生的数学成绩得如下累计表:分数段 理科人数 文科人数40,50)50,60)60,70)70,80) 正 正80,90) 正90,100(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,
18、点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(
19、选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)伊春市高中 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】考点:茎叶图,频率分布直方图2 【答案】 B【解析】解: = = =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力3 【答案】D【解析】解:函数 y=cos( x+ )的最小正周期不大于 2,T= 2,即|k| 4,则正整数 k 的最小值为 13故选 D【点评】此题考查了三角函数的周期
20、性及其求法,熟练掌握周期公式是解本题的关键4 【答案】D【解析】解:幂函数 y=x 为增函数,且增加的速度比价缓慢,只有符合故选:D【点评】本题考查了幂函数的图象与性质,属于基础题5 【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为 1;当正视图为对角面时,其面积最大为 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,
21、小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(
22、7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)因此满足棱长为 1 的正方体的俯视图是一个面积为 1 的正方形,则该正方体的正视图的面积的范围为因此可知:A,B,D 皆有可能,而 1,故 C 不可能故选 C【点评】正确求出满足条件的该正方体的正视图的面积的范围为 是解题的关键6 【答案】B【解析】解:由 Venn 图可知,阴影部分的元素为属于 A 当不属于 B 的元素构成,所以用集合表示为A( UB)A=x|x2x20=x|1x2,B=x|y=ln(1 x)=x|1x 0=x|x1 ,则 UB=x|x1,则 A( UB)=x|
23、1 x2故选:B【点评】本题主要考查 Venn 图表达 集合的关系和运算,比较基础7 【答案】A【解析】解:直线 x+y1=0 与 2x+2y+3=0 的距离,就是直线 2x+2y2=0 与 2x+2y+3=0 的距离是: =故选:A8 【答案】 B【解析】试题分析:化简为标准形式 ,圆上的点到直线的距离的最大值为圆心到直线的距离加1122yx半径, ,半径为 1,所以距离的最大值是 ,故选 B.21d 12考点:直线与圆的位置关系 19 【答案】D【解析】解:如图所示,ABC 中, =2 , =2 , =2 ,根据定比分点的向量式,得= = + ,由于玻璃板的两面间具有一定的厚度,而两个面都
24、会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(
25、5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)= + , = + ,以上三式相加,得+ + = ,所以, 与 反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目10【答案】B【解析】解:若 f(x)=|xm|x1|是定义在 R 上的奇函数,则
26、f(0)=|m|1=0 ,则 m=1 或 m=1,当 m=1 时,f (x)=|x1|x1|=0,此时为偶函数,不满足条件,当 m=1 时, f(x)=|x+1| |x1|,此时为奇函数,满足条件,作出函数 f(x)的图象如图:则函数在上为增函数,最小值为2,故正确的是 B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出 m 的值是解决本题的关键注意使用数形结合进行求解由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛
27、B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像
28、,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)11【答案】D【解析】解:命题是特称命题,则命题的否定是x R,都有 x1 或 x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础12【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量 x 只能有唯一的 y 与 x 对应,选项 B 中,当x0 时,有两个不同的 y 和 x 对应,所以不满足 y 值的唯一性所以 B 不能作为函数图象故选 B【点评】本题主要考查函数图
29、象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内 x 的任意性,x 对应 y 值的唯一性二、填空题13【答案】 【解析】解: 是第四象限角, ,则 ,又 sin(+ ) = ,cos( + )= cos( )=sin(+ )= ,sin( )=cos(+ )= 则 tan( )= tan( )= = 故答案为: 14【答案】 0,2 【解析】解:命题 p:|xa|3,解得 a3xa+3,即 p=(a 3,a+3);由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A
30、与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现
31、这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)命题 q:x 22x30,解得1x3,即 q=(1,3)q 是 p 的充分不必要条件,qp, ,解得 0a2,则实数 a 的取值范围是0 ,2 故答案为:0,2【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题15【答案】 xy 2=0 【解析】解:直线 A
32、B 的斜率 kAB=1,所以线段 AB 的中垂线得斜率 k=1,又线段 AB 的中点为(3,1),所以线段 AB 的中垂线得方程为 y1=x3 即 xy2=0,故答案为 xy2=0【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的 2 个端点距离相等)来求中垂线的方程16【答案】 53,14【解析】试题分析:作出函数 和 的图象,如图所示,函数 的图象是一个半2yx23ykx24yx圆,直线 的图象恒过定点 ,结合图象,可知,当过点 时, ,当3kx, ,0304k直线 与圆相切时,即 ,解得 ,所以实数的取值范围是 .2y2(0)1k5
33、12k5,12111由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”)
34、 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知
35、识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.17【答案】 5,+) 【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x) = x3,再由条件可得 m x2 在区间 , 上恒成立,求得 x2 在区间 ,上的最大值,可得 m 的范围【解答】解:由题意可得 f( x)= x6 = x3由 f(x)mx 在区间 , 上恒成立,可得 m x2 在区间 , 上恒成立,由于 x2 在区间 , 上的最大值为 5,故 m5,即 m 的范围为5,+),故答案为:5,+)【点评】本题主要考查
36、二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题18【答案】 4 【解析】解:由题意得 f(1)=3,且 f(1)=31 2=1所以 f(1)+f(1)=3+1=4故答案为 4【点评】本题主要考查导数的几何意义,要注意分清 f(a)与 f(a)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡
37、烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在
38、图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)三、解答题19【答案】 【解析】解:(I)由cosA= ,0A,sinA= = ,5(a 2+b2c2)=3 ab,cosC= = ,0C,sinC= = ,cos2C=2cos 2C1= ,cosB= cos( A+C)= cosAcosC+sinAsinC= + =0B,B= (II) = ,a= = c,ac= 1,a= ,c=1,S= acsinB= 1 = 【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识考查学生对基础知识的综合运用20【答案】 【解
39、析】解:由 12x2axa20(4x+a)(3x a)0( x+ )(x )0,a0 时, ,解集为x|x 或 x ;a=0 时,x 20,解集为x|xR 且 x0;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_
40、(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)a0 时, ,
41、解集为x|x 或 x 综上,当 a0 时, ,解集为x|x 或 x ;当 a=0 时,x 20,解集为x|x R 且 x0;当 a0 时, ,解集为x|x 或 x 21【答案】 【解析】解:(1)1,1 是函数 y=f(x)的零点, ,解得 b=0,c=1(2)f(1)=1+2b+c=0,所以 c=12b令 g(x)=f(x)+x+b=x 2+( 2b+1)x+b+c=x 2+(2b+1 ) xb1,关于 x 的方程 f(x)+x+b=0 的两个实数根分别在区间( 3,2),(0,1)内, ,即 解得 b ,即实数 b 的取值范围为( , )【点评】本题考查了二次函数根与系数得关系,零点的存在
42、性定理,属于中档题22【答案】【解析】【分析】()在图 1 中,ABC 中,由已知可得:ACDE在图 2 中,DEA 1D,DEDC,即可证明DE平面 A1DC,再利用面面垂直的判定定理即可证明()如图建立空间直角坐标系,设平面 A1BC 的法向量为 ,利用 ,BE 与平面所成角的正弦值为 ()设 CD=x(0x6),则 A1D=6x,利用 =(0x6),即可得出【解答】()证明:在图 1 中,ABC 中,DE BC ,ACBC ,则 ACDE ,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像