收藏 分享(赏)

微积分(第二版)吴传生6-1.PPT

上传人:myk79025 文档编号:8461017 上传时间:2019-06-28 格式:PPT 页数:43 大小:972.50KB
下载 相关 举报
微积分(第二版)吴传生6-1.PPT_第1页
第1页 / 共43页
微积分(第二版)吴传生6-1.PPT_第2页
第2页 / 共43页
微积分(第二版)吴传生6-1.PPT_第3页
第3页 / 共43页
微积分(第二版)吴传生6-1.PPT_第4页
第4页 / 共43页
微积分(第二版)吴传生6-1.PPT_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、,一、问题的提出,二、定积分的定义,三、存在定理,四、几何意义,五、小结 思考题,第一节 定积分的概念,实例1 (求曲边梯形的面积),一、问题的提出,用矩形面积近似取代曲边梯形面积,显然,小矩形越多,矩形面积和越接近曲边梯形面积,(四个小矩形),(九个小矩形),观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,播放,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲

2、边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意

3、当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系,曲边梯形如图所示,,曲边梯形面积的近似值为,曲边梯形面积为,实例2 (收益问题),思路:把整个销售量段分割成若干小段,每小段上价格看作不变,求出各小段的收益再相加,便得到整个收益的近似值,最后通过对销售量的无限细分过程求得收益的精确值,(1)分割,(3)求和,(4)取极限,收益的精确值,(2)近似,二、定积分(definite integral)的定义,定义,记为,积分上限,积分下限,积分和,注意:,定理1,定理2,三、存在定理,定理,对定积分的补充规定:,说明,在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小,曲边梯形的面积,曲边梯形的面积的负值,四、定积分的几何意义,几何意义:,例1 利用定义计算定积分,解,例2 利用定义计算定积分,解,证明,利用对数的性质得,极限运算与对数运算换序得,故,五、小结,定积分的实质:特殊和式的极限,定积分的思想和方法:,求近似以直(不变)代曲(变),取极限,思考题,将和式极限:,表示成定积分.,思考题解答,原式,练 习 题,练习题答案,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报