1、2019/6/20,1,X-射线衍射分析(XRD),X-射线的性质 X-射线的产生 X-射线与物质的相互作用 X-射线衍射分析原理 X-射线衍射分析应用,2019/6/20,2,X-射线,1895年伦琴(W.C.Roentgen)研究阴极射线管时,发现管的对阴极能放出一种有穿透力的肉眼看不见的射线。由于它的本质在当时是一个“未知数”,故称之为X射线。,2019/6/20,3,一、X-射线的性质, 肉眼不能观察到,但可使照相底片感光、荧光板发光和使气体电离; 能透过可见光不能透过的物体; 这种射线沿直线传播,在电场与磁场中不偏转,在通过物体时不发生反射、折射现象,通过普通光栅亦不引起衍射; 这种
2、射线对生物有很厉害的生理作用。,2019/6/20,4,二、X-射线的产生,产生X-射线的方法,是使快速移动的电子(或离子)骤然停止其运动,则电子的动能可部分转变成X光能,即辐射出X-射线。,2019/6/20,5,2019/6/20,6,特征X射线谱的产生,特征X射线的产生与阳极靶原子中的内层电子跃迁过程有关。如果管电压足够高,即由阴极发射的电子其动能足够大的时,那么当它轰击靶时,就可以使靶原子中的某个内层电子脱离它原来所在的能级,导致靶原子处于受激状态。此时,原子中较高能级上的电子便将自发的跃迁到该内层空位上去,同时伴随有多余的能量的释放。多余的能量作为X射线量子发射出来。显然,这部分多余
3、的能量等于电子跃迁前所在的能级与跃迁到达的能级之间的能量差。,2019/6/20,7,X射线的频率由下式决定: h 2 1式中1和2为原子的正常状态能量和受刺激状态时的能量。当打去K层电子时,所有靠外边的电子层中的电子都可能落到那个空位上,当产生回落跃迁时就产生K系的X射线光谱。K系线中,K线相当于电子由L层过渡到K层,K线相当于电子由M层过渡到K层。当然K线比K线频率要高,波长较短。整个K系X射线波长最短。结构分析时所采用的就是K系X射线。,2019/6/20,8,2019/6/20,9,三、X射线与物质的相互作用,X射线与物质相互作用时,会产生各种不同的和复杂的过程。但就其能量转换而言,一
4、束X射线通过物质时,它的能量可分为三部分:其中一部分被散射,一部分被吸收,一部分透过物质继续沿原来的方向传播。透过物质后的射线束由于散射和吸收的影响强度被衰减。X射线与物质作用除散射、吸收和通过物质外,几乎不发生折射,一般情况下也不发生反射。,2019/6/20,10,1、 X射线的散射,定义:X射线通过物质时,其部分光子将会改变它们的前进方向这就是散射现象。 散射现象:包括相干散射和不相干散射,2019/6/20,11,相干散射或称古典散射,当入射X光子与物质中的某些电子(例如内层电子)发生碰撞时,由于这些电子受到原子的强力束缚,光子的能量不足以使电子脱离所在能级的情况下,此种碰撞可以近似地
5、看成是刚体间的弹性碰撞,其结果仅使光子的前进方向发生改变,即发生了散射,但光子的能量并未损耗,即散射线的波长等于入射线的波长。此时各散射线之间将相互发生干涉,故成为相干散射。相干散射是引起晶体产生衍射线的根源。,2019/6/20,12,不相干散射也称康普顿效应,当入射X射线光子与物质中的某些电子(例如外层电子)发生碰撞时,由于这些电子与原子间的结合松弛,可以近似地看成是自由电子,碰撞的结果,X射线光子将一部分能量传递给电子,使电子脱离原子而形成反冲电子,同时光子本身也改变了原来的前进方向,发生了散射。这种散射由于各个光子能量减小的程度各不相同,即每个散射光子的波长彼此不等,因此相互不会发生干
6、涉,故称为不相干散射。不相干散射线的波长比入射X射线的能量小、波长大。在X射线衍射分析中只增加连续背景,给衍射图带来不利影响。,2019/6/20,13,2、X射线的吸收,物质对X射线的吸收是指X射线能量在通过物质时转变为其它形式的能量。对X射线而言,即发生了能量损耗。有时把X射线的这种能量损耗称为吸收。物质对X射线的吸收主要是由原子内部的电子跃迁引起的。在这个过程中发生X射线的光电效应和俄歇效应,使X射线的部分能量转变成为光电子、荧光X射线及俄歇电子的能量。此外入射X射线的能量还消耗于产生热量。因此,X射线的强度被衰减。,2019/6/20,14,2019/6/20,15,四、X-射线衍射分
7、析原理,布拉格方程: n=2dsin,2019/6/20,16,五、X-射线衍射分析应用,2019/6/20,17,Xpert MPD Pro,2019/6/20,18,1、物相分析,确定物质(材料)由哪些相组成(即物相定性分析或称物相鉴定) 确定各组成相的含量(常以体积分数或质量分数表示,即物相定量分析)。,2019/6/20,19,(1)物相定性分析,基本原理与方法 物质的X射线衍射花样特征:分析物质相组成的“指纹脚印”。 制备各种标准单相物质的衍射花样并使之规范化,将待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相。,2019/6/20,20,PDF卡片,各种已知物相衍射花样的
8、规范化工作于1938年由哈那瓦特(J. D. Hanawalt)开创。 他的主要工作是将物相的衍射花样特征(位置与强度)用d(晶面间距)和I(衍射线相对强度)数据组表达并制成相应的物相衍射数据卡片。 卡片最初由“美国材料试验学会(ASTM)”出版,称ASTM卡片。 1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片。,2019/6/20,21,氯化钠(NaCl)的PDF卡片,2019/6/20,22,PDF卡片索引,为方便、迅速查对PDF卡片,JCPDS编辑出版了多种PDF卡片检索手册: Hanawalt无机物检查手册、Hanawal
9、t有机相检查手册、无机相字母索引、Fink无机索引、矿物检索手册等 检索手册按检索方法可分为两类:以物质名称为索引(即字母索引)、以d值数列为索引(即数值索引)。,2019/6/20,23,数值索引,以Hanawalt无机相数字索引为例。 其编排方法为:一个相一个条目,在索引中占一横行,其内容依次为按强度递减顺序排列的8条强线的晶面间距和相对强度值、化学式、卡片编号和参比强度值。条目示例如下: 芬克无机数值索引与哈那瓦特数值索引相类似,主要不同的是其以八强线条的d值循环排列,每种相在索引中可出现8次。,2019/6/20,24,字母索引,以物相英文名称字母顺序排列。每种相一个条目,占一横行。
10、条目的内容顺序为:物相英文名称、三强线d值与相对强度、卡片编号和参比强度号。条目示例如下:,2019/6/20,25,物相定性分析的基本步骤,(1)制备待分析物质样品; (2)用衍射仪法或照相法获得样品衍射花样; (3)检索PDF卡片; (4)核对PDF卡片与物相判定。,2019/6/20,26,多相物质分析,多相物质相分析的方法是按上述基本步骤逐个确定其组成相。 多相物质的衍射花样是其各组成相衍射花样的简单叠加,这就带来了多相物质分析(与单相物质相比)的困难: 检索用的三强线不一定局于同一相,而且还可能发生一个相的某线条与另一相的某线条重叠的现象。 因此,多相物质定性分析时,需要将衍射线条轮番搭配、反复尝试,比较复杂。,2019/6/20,27,2、物相定量分析,基本原理 定量分析的任务是确定物质(样品)中各组成相的相对含量。 由于需要准确测定衍射线强度,因而定量分析一般都采用衍射仪法。 设样品中任意一相为j,其某(HKL)衍射线强度为Ij,其体积分数为fj,样品(混合物)线吸收系数为;定量分析的基本依据是:Ij 随fj的增加而增高;但由于样品对X射线的吸收,Ij 亦不正比于fj,而是依赖于Ij与fj及之间的关系。,