1、概率论与数理统计学 习 报 告学院学号: 姓名: 概率论与数理统计学习报告通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。先简单地介绍一下概率论与数理统计这门学科。概率论是基于给出随机现象的数学模型,
2、并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中
3、存在一些人们不能认识或者根本不知道的随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。概率论应用随机变量与随机变量的
4、概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做
5、作业看书过程中遇到的一些问题都引发了我的一些思考,或许解答得并不全面甚至还可能是不正确的,但确实是自己的一点思考,提出来以后逐步地去解决完善吧。随机事件及其概率问题:(1)事件 A= 对吗?, 那 么0)(APAP0)(解析:此种说法不对。概率论里说了不可能事件的发生概率是0,但 0 概率事件可能发生.比如在宇宙中抽一个人,抽到你的概率。这就是一个 0 概率事件可能发生的例子!随机变量分连续和离散两种,它们各自的分布描述是不同的。对于离散随机变量,如果它的事件域是有限个事件,则可以认为概率为 0 的事件一定不会发生,概率为 1 的事件必然发生。但若事件是无限的,则还要具体分析。既然 0 概率事
6、件都是有可能发生的,那么概率趋近于零的事件果然有可能发生,只不过我们平时在处理问题的时候,把概率趋近于零的事件算作 0 概率事件,只是算作,不是绝对的是。对于连续性随机变量,单个具体点的概率密度值为一有界常数,这个值可以是任意的(包括 0 和 1),但因为点是没有长度的,所以该点的概率密度积分为 0(因为该点概率密度值有界),即该点所对应的事件发生的概率为 0,但这个事件仍然是可能发生的,因为这个事件在事件域内。也就是说,概率为 0 的事件并不一定不会发生。同理,某个点的概率密度值为 1,但该点的概率密度积分仍为 0,所以概率为 1 的事件也不一定必然发生。总之,对于连续性随机变量,讨论单个点
7、的概率是没有意义的(都为 0),我们讨论的是,这个随机变量落在一个区间内的概率。(2)事件 A、B、C,它们两两独立,是否 A、B 、C 一定是相互独立?解析:不一定。举一个反例:某一个袋中有 4 个球,一个白色,一个黑色,一个红色,一个为这三色,现任取一个球观察颜色。可知:设事件 A,B,C,A=(有红色),B=(有白色),C= (有黑色)。,21()(CPBAA、)()()(4) CPBAPBB、 C 两两独立,又 A、B 、C21(AB不是相互独立。所以几个事件两两独立不一定它们就是相互独立。(对于此反例,有一个问题就是,21)()()(41)()() CPBAPBBCPABP,(虽然在
8、数值上相等,但会是一个数值上的巧合吗?一定成立吗?))()((3)独立与互不相容的关系:(独立条件: ,互不)()(BPA相容条件: )0)(ABP解析:若 ,则 a:A、B 独立,1)(,PA、B 相容。 b: A、B 不独立,)()(A、B 互不相容; A、B 相容0P 0()()P(4)A 与 B 互相独立, , A、C 是否一定互相独立?解析:A、C 不一定独立。举一反例:如图:由图可知: 所以BPP,0)()( )(0)(CPAPA、C 不独立。 随机变量及其分布问题:概率论中引入随机变量,从而使研究对象由随机事件扩大为随机变量,对于随机变量的分布函数,我们能够用微积分为工具进行研究
9、,强有力的数学分析工具大大地增强了我们研究随机现象的手段研究随机现象手段离散型随机变量分布列一般性随机变量分布函数连续性随机变量概率密度随机变量数字特征与极限定理:我们都知道随机变量的概率分布能够完整地描述随机变量的统计规律,但在许多的实际问题中,求概率分布并不容易,另一方面,有时不需要知道随机变量的概率分布,而只需要知道他的某些数字特征就够了。数字特征虽然不像概率分布那样完整地描述了随机变量的统计规律,但它能集中地反映随机变量的某些统计特性,而且许多重要分布中的参数都与数字特征有关,因而数字特征在概率论与数理统计中占有重要地位。我们也学习了几种常见的分布的数字特征,包括期望、方差、协方差、相
10、关系数以及矩等。(1)不相关与独立之间的关系:解析:不相关的等价命题:1。 2。cov(x,y)=0 03。E(XY)=E(X)E(Y) 4。D(X+Y)=D(X)+D(Y) 不 相 关有 数 字 特 征 )独 立 )()(YEX结论:(1) X 与 Y 独立,则 X 与 Y 一定不相关(2)X 与 Y 不相关,则 X 与 Y 不一定独立证明:(1)由于 X 与 Y 独立,所以 f(xy)=f(x)f(y),(f 为概率密度函数)于是:E(XY)=f(xy)dxdy=f(x)*f(y)dxdy=f(x)dx*f(y)dy=E(X)E(Y)所以:E(XY)=E(X)E(Y),即 X,Y 不相关。
11、(2)反例: X=cost,Y=sint,其中 t 是(0,2上的均匀分布随机变量。易得 X 和 Y 不相关,因为:E(XY)=E(cost sint)=(1/2)*sint cost dt = 0E(X)=(1/2)* cost dt = 0,E(Y)= (1/2)* sint dt = 0所以 E(XY)=E(X)E(Y)。但是他们是不独立的。因为:X 和 Y 各自的概率密度函数在(-1,1)上有值,但是XY 的联合概率密度只在单位圆内有值,所以 f(XY)不等于 f(x)*f(y),两者不独立。(2)切比雪夫不等式: 2)()(XDEXP切比雪夫不等式给出了在随机变量 X 的分布未知的情
12、况下,利用 和 对 X 的概率分布进行估计的方法,有很广泛的应)(XE)(D用。(3) 注意一些应用中的独立条件:1。概率密度(y) ;2。卷积公式 YXfxyf)(,(. ;3。N 个独立正态分布之和仍然是正态分)zZdxz)布 ;4。 ,,(121niiniiN)()(YEX)(YDXYD数理统计与参数估计:数理统计以概率论为理论基础,根据试验或观测到的数据,研究如何利用有效的方法对这些已知的数据进行整理、分析和推断,从而对研究对象的性质和统计规律作出合理科学的估计和判断。然而在实际问题中,所研究的总体分布类型往往是已知的,但依赖于一个或几个的未知参数,如何从样本估计总体的未知参数就成为数
13、理统计的基本问题之一。通过学习,简单地了解了一些关于点估计和区间估计的问题,能够解决一些简单的实际问题。(1)如何推导出的样本方差: )(1)(1222 XnxnXxnSi ii 推导过程:XN , N 。 (注意独立条件)),(2X),(2= N 由1,nxxXnijiii 1,nxniji )1(34,(223n是 的无偏估计从,中随机抽取 n 个样本, 是样本2S)(D均值, 是样本方差。那么为什么样本方差是除以 而不是 n 呢?对于一个随机变量 , 分别表示其数学期望和方差,从中随机抽取 n 个样本 , 是样本均值,记 为 的方差和期望。概率论与数理统计与生活实际问题有着很密切的联系。
14、它能将生活中的一些问题建立成一种数学模型,并且教给我们一些收集、分析、处理试验数据能力,使我们能够利用学过的成熟的数学工具和方法来研究随机现象解决生活实际问题。以下就是几类我认为比较经典的模型和处理方法:(1) “抓阄”是否是真正的公平?解析:建立一个概率论模型:袋中有 a 个黑球,b 个白球。随机地(不放回)把球一个个地摸出来。求 A=“第 k 次摸出的是黑球”的概率(k ).ba解题:把 a 个黑球与 b 个白球看作是不同的,且把 个球的ba每一种排列看作是基本事件。于是基本事件总数 !。由于第 k)(次摸得黑球有 a 种可能,而另外 次摸得球的排列有 !1a )1(种可能。所以 A 中包
15、含的基本事件数为 !。因此有:)1(ba。由结果得出它与 k 值无关,无论哪一次取baP)(1)(得黑球的概率都是一样的,或者说是取得黑球概率与先后次序无关。这就从理论上说明了平常人们采取的“抓阄”的办法是公平合理的。(2)把一个比较复杂的随机变量 X 拆成 n 个比较简单的随机变量的和,然后通过这些比较简单的随机变量的数学期望,根据数学ix期望的性质求得 X 的数学期望。这是概率论中常采用的处理方法。建立一个数学模型:r 个人在楼的底层进入电梯,楼上有 n 层,每个乘客在任一层下电梯的概率是相同的。如到某一层无乘客下电梯,电梯就不停下。求直到乘客都下完时电梯停车的次数 X 的数学期望。解题:
16、设 表示在第 层电梯停车的次数,则 iXi iX,易见 由层 有 人 下 电 梯 。, 第 层 没 有 人 下 电 梯 ,第 i1,0 niinii EXX11 )()(,且于每个人在任一层下电梯的概率均为 ,故 r 个人同时不在第 层下电梯的概率为 ,即:i rn)(。从而, 于是:rinXP)1()0(riXP1)(),.2,(1innE rrri 得 rniiX)()()(1(3)贝叶斯公式的应用: 式中 称为先nj jjiii ABPBAP1)()( )(iP验概率,一般在试验前就已知,常常是以往的经验总结; 称)(BAi为后验概率,它反映了试验之后对各种原因发生的可能性大小的新知识。
17、贝叶斯公式实际就是根据先验概率求后验概率的公式。例题模型:设患病的人经过检查,被查出的概率为 0.95,而为患病的人经检查,被误认为有肺病的概率为 0.002。又设在全城居民中患病的概率为 0.1%。若从居民中随机抽一人检查,诊断为有肺病,求这个人确实患有肺病的概率。解题:以 A 表示某居民患肺病的事件, 以表示某居民无肺病。设AB 为检查后诊断为有肺病的事件,于是问题就是求 .由于)(BAP互不相容,与又, 32.09.02.9501.)()()( ABPAP概率论与数理统计有太多的奥妙,在我们的生活中有太多的“可能性” “把握有多大” “估计值” “预测” 。 。 。都与概率论与数理统计有着密切的联系,当我们真正的去深入研究它的时候,我相信我们一定会有意想不到的收获。