1、一,实验目的四,心得体会了解信号频谱和信号频域,掌握其特性。一,实验原理实验主要分为四个部分,分别分析了连续和离散信号的周期、非周期情况下特性。1.连续周期信号的频谱分析首先手算出信号的傅里叶级数,得出信号波形,然后通过代码画出信号波形图。2.连续非周期信号的频谱分析先由非周期信号的时域信号得到它的频谱 X(w) ,再通过MATLAB 求出其傅里叶变换并绘出图形。X=fourier(x)x=ifourier(x)符号运算法syms t数值积分法quad(fun,a,b)数值近似法3.离散周期信号的频谱分析X=fft(x)4.离散非周期信号的频谱分析可以化为两个相乘的矩阵,从而由 MATLAB
2、实现。三,实验内容(1)已知 x(t)是如图周期矩形脉冲信号。1).计算该信号的傅里叶级数。2).利用 MATLAB 绘出由前 N 次谐波合成的信号波形,观察随着 N 的变化合成信号波形的变化规律。3).利用 MATLAB 绘出周期矩形脉冲信号的频谱,观察参数 T 和 变化时对频谱波形的影响。思考下列问题:什么是吉伯斯现象?产生吉伯斯现象的原因是什么?以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。周期矩形脉冲信号参数 /T 的变化,其频谱结构(如频谱包络形状、过零点、频谱间隔等)如何变化?(2)已知 x(t)是如图所示矩形脉冲信号。1).求该信号的傅里叶变幻。2). 利用 MATLAB
3、 绘出周期矩形脉冲信号的频谱,观察参数 T 和 变化时对频谱波形的影响。3). 让矩形脉冲宽度始终等于一,改变矩形脉冲宽度,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同。让矩形脉冲的面积始终等于一,改变矩形脉冲的宽度,观察矩形脉冲信号时域波形和频谱波形随矩形脉冲宽度的变化趋势。(1)已知 x(t)是如图所示的周期矩形脉冲信号,计算该信号的傅里叶级数答:由图中 x(t)波形可知信号 为通过计算,可以知道所以 x(t)的傅里叶级数为 。利用 MATLAB 绘出前 N 次 谐波合成的信号波形,观察随着 N 的变化合成信号波形的变化
4、规律。Matlab 程序如下:t=-1.5:0.01:1.5N=input(N=)A=1T=2*pita=T/2syms xtfor i=1:(length(N)x=A*ta/Tendfor k=1:N(i)x=x+2/(k*pi)*sin(k*pi*ta/T)*cos(2*pi*k*t/T)endif mod(i,4)=1figureflag=13 endsubplot(2,2,flag)ezplot(x)str_title=N=,sprintf(%d,N(i)title(str_title)grid on程序执行结果:由图形可知,随着 N 的增大, 选取的傅里叶级数增加,合成波形越来越接近
5、原有的矩形脉冲信号。利用 MATLAB 绘出周期矩形脉冲信号的频谱, 观察参数 T 和 变化时, 对频谱波形的影响。答:由计算,MATLAB 程序如下:N=input(N=)A=input(A=)T=input(T=)i=input(c=)n1=-N:-1c1=A./n1./pi.*sin(n1.*pi.*i./T)c0=A.*i./Tn2=1:Nc2=A./n2./pi.*sin(n2.*pi.*i./T)cn=c1 c0 c2n=-N:Nsubplot(211)stem(n,abs(cn),filled)xlabel(w/w0)title(Magnitude of ck)subplot(2
6、12)stem(n,angle(cn),filled)xlabel(w/w0)title(Phaseof ck)程序执行结果:输入 N=18,A=3,T=3,c=0.1:输入 N=18,A=3,T=3,c=1:输入 N=18,A=3,T=1,c=1:由程序执行结果可知,频谱波形与 /T有关,当比 值相同时,频谱波形图相同,比值不同时,随比值的减小,频谱包络性状趋于收敛、过零点越少、谱线越密。思考:什么是吉伯斯现象?产生吉伯斯现象的原因是什么?答:吉伯斯现象:将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出 现的峰起越靠近原信号
7、的不 连续点。当选取的项数很大时,该峰起值趋 于一个常数,大 约等于总跳 变值的 9%。这种现象称为吉伯斯现象。产生原因:当一个信号通过某一系统时,如果 这个信号不是 连续时间函数, 则由于一般物理系统对信号高频分量都有衰减作用,从而 产生。以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。答:周期信号的频谱是具有周期性的一系列脉冲信号,谱线间 隔为 w,谱线长度岁谐波次数增高趋于收敛。周期矩形脉冲信号的有效频带宽度与信号的时域宽度之间有什么关系?答:有效频宽与信号的时域宽度成反比。随着矩形脉冲信号参数 /T 的变化,其频谱结构如何变化?答:比值越小,频谱包络性状趋 于收敛、 过零点越少、
8、谱线越密。(2)已知 x(t)是如图所示的矩形脉冲信号。求该 信号的傅里叶 变换。由所给波形可知,Matlab 程序如下:syms tA=input(A=)c=input(c=)x=A*(heaviside(t+c/2)-heaviside(t-c/2)X=fourier(x)collect(X)则当A=1, c=1,可得ans=(2*sin(w/2)/w=Asinc(w /2)所以x(t)的傅里叶变换为利用 MATLAB 绘出矩形脉冲信号的频谱, 观察矩形脉冲宽度 变化时对频谱波形的影响。Matlab 程序如下:syms t wm=input(m=)X=int(exp(-j*w*t),t,-
9、m/2,m/2)ezplot(X,-6*pi,6*pi)xlabel(w)ylabel(Magnitude)title(X(w) =1)程序执行如下:由程序执行结果可知,当矩形脉冲 宽度增大时,信号占有 频带 减小,二者呈反比关系。让矩形脉冲的面积始终等于 1,观察矩形脉冲信号时域波形和 频谱随矩形脉冲宽度的变化趋势。Matlab 程序如下:syms wB=input(B=)A=1x=(2*A/w)*sin(w*B/2)subplot(211)ezplot(abs(x),-6*pi,6*pi)grid onxlabel(omege)ylabel(Magnitude)title(|x(omega
10、)|)X=heaviside(t+B/2)-heaviside(t-B/2)subplot(212)ezplot(X,-5:5)程序执行如下:B=0.5:B=1B=3由程序执行结果可知,时域波形幅 值越大,信号占有的 频带宽 度越宽。思考:比较 矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同?答:同:它们的有效频带宽度都是与脉冲宽度成反比。异:周期矩形脉冲信号的频谱是离散的,而矩形脉冲信号的 频谱连续。根据矩形脉冲宽度变化时频谱的变化规律, 说明信号的有效 频带宽度与其时域宽度之间的关系。当脉冲宽度趋于 0,脉冲的面 积始终等于一,其频谱有何特点?答:矩形脉冲信号的有效频带宽度与其时域
11、宽度成反比;当脉冲宽度趋于 0,脉冲的面积始终等于一,其频谱会无限趋 近于高度为 1 的一条直线。(3)已知 x(n)是如图所示的周期方波序列。利用 MATLAB 绘制周期方波序列的频谱波形,改变参数 N 和 N1 的大小,观察频谱波形的变化趋势。Matlab 程序如下:N=input(N=)N1=input(N1=)n=-N1:N1x1=ones(size(n)n=N1+1:N-N1-1x2=zeros(size(n)x=x1,x2n=-N1:N-N1-1X=fft(x)subplot(211)stem(n,x,filled)xlabel(n)title(x(n)subplot(212)st
12、em(n,X,filled)xlabel(k)title(X(k)程序执行如下:N=9,N1=2N=8,N1=3N=10,N1=2N=11,N1=1思考:以周期方波序列为例,说明周期序列与连续周期信号的 频谱有何异同。答:同:周期序列与连续周期信号的频谱都是离散的,且都有收敛性和谐波性。异:连续周期信号在一个周期内要用无限多项级数来表示,而周期序列用有限 项级数就可以表示。随着周期方波序列占空比的变化,其 频谱如何随之变化?答:方波序列占空比越小,频谱 的谱线越密机, 谱线高度越高。(4)已知一矩形脉冲序列。X(n)=1,|n|10,|1利用 MATLAB 绘制周期方波序列的 频谱波形,改变矩
13、形脉冲序列的宽度,观察频谱波形的变化趋势。MATLAB 程序如下:N1=input(N1=)n=-N1:N1w=-pi:0.01:pix=ones(size(n)X=x*exp(-j*n*w)subplot(211)stem(n,x,filled)xlabel(n)title(x(n)subplot(212)plot(w/pi,abs(X)grid onxlabel(omega/pi)title(|Xejomega|)程序执行如下:N1=2N1=4N1=8可以看出,随矩形脉冲序列宽 度的增加,其 频谱的有效频带宽 度减小,二者成反比。思考:随着矩形脉冲序列宽度的变化,其 频谱如何随之变化?其 宽度与频谱的有效频带宽度有何关系?答:随着矩形脉冲序列宽度的增加,其 频谱的有效频带宽度减小,二者成反比。四,心得体会傅里叶变换作为信号与系统课程的基础,其计算的繁琐常常让人为难。而 MATLAB 在这方面对我起到了极大的帮助。