收藏 分享(赏)

发输电可靠性测试系统IEEERTS96.pdf

上传人:精品资料 文档编号:8039779 上传时间:2019-06-05 格式:PDF 页数:11 大小:913KB
下载 相关 举报
发输电可靠性测试系统IEEERTS96.pdf_第1页
第1页 / 共11页
发输电可靠性测试系统IEEERTS96.pdf_第2页
第2页 / 共11页
发输电可靠性测试系统IEEERTS96.pdf_第3页
第3页 / 共11页
发输电可靠性测试系统IEEERTS96.pdf_第4页
第4页 / 共11页
发输电可靠性测试系统IEEERTS96.pdf_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、1010 IEEE Transactions on Power Systems, Vol. 14, NO. 3, August 1999 The IEEE Reliability Test System = 1996 Application of Probability Methods Subcommittee A report prepared by the Reliability Test System Task Force of the ABslRAcT This oeportdescribesan enhanced testsystem (WW)for MW In bulk power

2、 system reliability evaluation studies. The value of the tost system is that it will permit comparative and benchmark studios to be perf0me-d on new and existing reliability evaluation techniques. The test system was developed by modifying and updating the original IEEE RTS (referred to as RTS79 her

3、eafter) to reflect changes In evaluation methodologies and to overcome perceived deficiencies. - The first version of the IEEE Reliability Test System (RTS 79) was developed and published in 1979 l by the Application of Probability Methods (APM) Subcommittee of the Power System Englaeering Committee

4、. It was developed to satisfy the need for a standardized data base to test and compare results from different power system reliability evaluation methodologies. As such, RTS-79 was designed to b a reference system that contains the core data and system parameters necessary for composite reliability

5、 evaluation methods. It was recognized at that time that enhancements to RTS 79 may be required for particular applications. However, it was felt that additional data needs could be supplemented by individual authors and or addressed in future extensions to the RTS-79. In 1986 a second version of th

6、e RTS was developed (RTS 86) and published 2 with the objective of making the RTS more useful in assessing different reliability modeling and evaluation methodologies. Experience with RTS79 helped to Identify the critical additional data requirements and the need to Include the reliability Indices o

7、f the test system. RTS-86 expanded the data systam primarily relating to the generation system. The revision not only extended the number of generating units in the RTS-79 data base but also included unit derated states, unit scheduled mairJtenance, load forecast uncertainty and the effect of interc

8、onnection. The advantage of RTS-86 lies In the fact that it presented the system reliability indices derived through the use of rigorous solution techniques without any approximations in the evaluation process. These exact indices serve to compare with resurts obtained from other methods. Since the

9、publication of RTS-79, several authors have reported the results of their research in the IEEE Journals and many international journals using this system. Several changes in the electric utility industry have taken place since the publication of RTS- 79, e.g. transmission access, emission caps, etc.

10、 These changes along with certain perceived enhancements to RTS-79 motivated this task force to suggest a multi-area RTS incorporating additional data. * Cu-Chairmen: C. Grigg and P.Wong; P. Albrecht, R Allan, M. Bhavaraju, R Billinton, 0. Chen, C. Fong, S. Haddad, S. Kuruganty, W. U, R. Mukerji, D.

11、 Patton, N. Rau, D. Reppen, k Schneider, M. Shaliidehpour. C. Singh. See Biographies for affiliations. 96 WM 326-9 PWRS .4 paper recommended and approved by the IEEE Power System Engineering Committee of the IEEE Power Engineering Society for presentation at the 1996 IEEFYPES Winter Meeting, January

12、 21- 25, 1996, Baltimore, MD. Manuscript submitted August 1, 1995; made avai!able for printing January 15, 1996. It should be noted that In developing and adopting the various parameters for RTS-96, there was no Intention to develop a test system which was representative of any specific or typical p

13、ower system. Forcing such a requirement on RTs-98 would result in a system with less universal characteristics and therefore would be less useful as a reference for testing the impact of different evdraation techniques on diveme applications and technologies. Ofbe of the Important requirements of a

14、good test system is that it should represent, as much as possible, all the different technologies and configurations that could be encountered on any system. RTs96 therefore has to be a hybrid and atypical system. SYslEMTOPOUXY The topology for RTS-79 is shown in Figure 1 and is labeled kea A Si- th

15、e demand for methodologles that can analyze multi-area power systems has been Increasing lately due to increases in interregional transactions and advances in available computing power, the task force dedded to develop a multi-area reliability test system by linking various single RTS79 areas. Figur

16、e 2 shows a two-area system developed by merging two single areas - - Area A and Area B through three interconnections. As shown the two areas are interconnected by the following new Interconnections: 0 0 0 51 mile 230 kV line connecting bus # 123 and bus # 217 52 mile 230 kV line connecting bus # 1

17、13 and bus # 215 42 mile 138 kV line connecting bus # 107 and bus # 203. 38 kV Figure 1 - IEEE One Area RTS-96 0885-8950/99/$10.00 0 1996 IEEE 1011 Figure 2 - IEEE Two Area RTS-96 P Y 1012 h Figure 4 - IEEE Three Area RTS-96 1013 2 3 4 Figure 3 shows relative geographic positions for the two- area s

18、ystem. Figure 4 shows a thrm-area system formed by adding a third single area “Area C to the two-area system through two interconnections. A 72 mile 230 kV line connects Area Bat bus 223 to Area Cat bus # 318 and a 67 mile 230 kVline connects Area A at bus # 121 to Area C at bus # 325. A phase shift

19、 transformer has been added between buses # 325 and 323 in Area C. An optional DC link connects ,Area A“ at bus # 113 to Area C at bus # 316. 90.0 28 81.6 878 29 80.1 83.4 30 88.0 Bus WTA Except for the bus numbering system, the bus data has not changed from the RTS79 data. Table 1 lists the bus dat

20、a for the three areas. The buses for each area are numbered with a preassigned numbering system. For .Area A the buses are labeled with numbers ranging from 101 through 124. For “Area B, the buses are labeled with numbers ranging from 201 through 224. While for Area C the buses are labeled with numb

21、ers ranging from 301 through 325. In addition, the three areas buses are divided Into subareas and zones. The bus load Is assigned based on assumptions shown in Table 5. TaMe 1 - IEEE RlS-96 ; 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 21 21 21 21 21 21 21 21 21 21 21 21 22 22

22、 22 22 22 22 22 22 22 22 22 22 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32 % 138 138 138 138 138 138 138 138 230 230 230 230 230 230 230 230 230 230 230 230 230 230 138 138 138 138 138 138 138 138 138 138 230 230 230 230 230 230 230 230 230 230 230 230 230 230 138 138

23、138 138 138 138 138 138 138 138 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 41 11 11 11 12 12 12 13 13 13 13 14 16 16 16 17 17 15 15 17 17 15 16 21 22 21 21 21 22 22 22 23 23 23 23 24 26 26 26 27 27 25 25 27 27 25 26 31 32 31 31 31 32 32 32 33 33 33 33 34 36 36 36 37 37 35 35 37 37 3

24、5 36 35 Bus Type: 1 - Load Bus (no generation). 2- generator or plant bus. 8 swing bus. load real power to be held constant. load reactive power to be held constant. real component of shunt admittance to ground. imaginatycomponent of shunt admittance to ground. Mw Load: WAR Load: GL: 61: wsTEMu)ADs

25、Tabk 2 shows the weekly peak loads in percent of the annual peak. This seasonal load profile can be used to adapt to any system peaking season one desires to model. For example, if week number 1 is assumed to be the first week of the calendar year, then table 2 shows a winter peaking system with the

26、 peak occurring in the week prior to Christmas. If week number one is assumed to be the first week of August, then table 2 shows a summer peaking system with an assumed peak occurring in the month of July. Table 3 shows the assumed daily peak load In percent of the weekly peak; while Table 4 shows t

27、he hourly load in percent of the daily peak (note that the week numbers corresponding to the seasons of the year can be reassigned depending on the dimate zone that one wishes to model.) Table 5 shows the assumed load for each bus of the threearea system. Table 2- Weekly Peak Load in Percentofhnual

28、peak Table 3- Oaii bad in Percent of Weekly Peak Monday 1 93 Tuesday 100 Wednesday 98 mndav 96 Fmy 94 Saturday 77 IL 1 Sunday 75 GENERATING UNKS The major addition to this revision is the inclusion of production cost related data for the generating units. Unit start-up (hot and cold start) heat inpu

29、t, net plant incremental heat rates, unit cycling restrictions and ramping rates and unit emissions data have been included to facilitate system production cost calculations and erriissions analysis. Table 6 shows the unit availability assumptions. Table 7 shows unit active and reactive power quanti

30、ties used in the basecase load flow. Table 8 shows unit start-up heat input requirements. Table 9 shows the generating unit heat rates. Table 10 tabulates the units cycling restrictions and ramp rates while Table 11 shows the assumed unit emissions. U197 197 OiVSteam 0.05 1 950 M U39 350 CoaGtearn 0

31、.08 I 110 100 5 U400 400 Nuclear 0.12 I 1100 1% 6 -. TaMe 7- Dataof Genecafors at Each BuS Bus Unit ID PG QG 6“= 6“ % ID Type # MW WAR WAf3 WAR pu 101 101 101 101 1 02 102 102 102 107 107 107 113 113 113 114 115 115 115 115 115 115 116 118 121 122 122 122 122 122 122 123 123 123 201 201 201 201 202

32、202 202 202 207 207 207 213 213 213 214 215 215 215 21 5 215 U20 U20 U76 U76 U20 U20 U76 U76 U100 U100 U100 U197 U197 U197 Sync Cond U12 U12 U12 U12 U12 U155 U155 U400 woo U50 U50 U50 U50 U50 U50 U155 U155 U350 U20 U20 U76 U76 U20 U20 U76 U76 U100 U100 U100 U197 U197 U197 Sync Cond U12 U12 U12 U12 U

33、12 1 10 2 10 3 76 4 76 1 10 2 10 3 76 4 76 180 280 380 1 95.1 2 95.1 3 95.1 10 1 12 2 12 3 12 4 12 5 12 6 155 1 155 1400 1400 150 250 350 450 550 650 1 155 2 155 3350 1 10 2 10 3 76 4 76 1 10 2 10 3 76 4 76 180 280 380 1 95.1 2 95.1 3 95.1 10 1 12 2 12 3 12 4 12 5 12 215 U155 6 155 0 0 14.1 14.1 0 0

34、 7.0 7.0 17.2 17.2 17.2 40.7 40.7 40.7 13.7 0 0 0 0 0 0.05 25.22 137.4 108.2 -4.96 4.96 4.96 4.96 4.96 4.96 31.79 31.79 71.78 0 0 14.1 14.1 0 0 7.0 7.0 17.2 17.2 172 40.7 40.7 40.7 13.68 0 0 0 0 0 0.048 10 10 30 30 10 10 30 30 60 60 60 80 80 80 200 6 6 6 6 6 80 80 200 200 16 16 16 16 16 16 80 80 150

35、 10 10 30 30 10 10 30 30 60 60 60 80 80 80 200 6 6 6 6 6 80 0 1.035 0 1.035 -25 1.035 -25 1.035 0 1.035 0 1.035 -25 1.035 -25 1.035 0 1.025 0 1.025 0 1.025 0 1.020 0 1.020 0 1.020 50 0.980 0 1.014 0 1.014 0 1.014 0 1.014 0 1.014 -50 1.014 -50 1.017 50 1.050 50 1.050 -10 1.050 -10 1.050 -10 1.050 -10

36、 1.050 -10 1.050 -10 1.050 -50 1.050 -50 1.050 -25 1.050 0 1.035 0 1.035 -25 1.035 -25 1.035 0 1.035 0 1.035 -25 1.035 -25 1.035 0 1.025 0 1.025 0 1.025 0 1.020 0 1.020 0 1.020 50 0.980 0 1.014 0 1.014 0 1.014 0 1.014 0 1.014 -50 1.014 Table 7 (continued) Bus Unit ID PG QG 4“a 4“ % ID Type # MW WAR

37、WAR WAR pu Unit Unit group Sue (MW) U12 12 U20 20 U50 50 216 218 221 222 222 222 222 222 222 223 223 223 301 301 301 301 302 302 302 302 307 307 307 313 313 313 314 315 315 315 315 315 315 316 318 321 322 322 322 322 322 322 323 323 323 Unit Hot Cold Type Start Start (MBTU) (MBTU) OiVStearn 38 68 Oi

38、VCT 5 5 Hvdro N/A N/A U155 woo woo U50 U50 U50 U50 U50 U50 U155 U155 U350 U20 U20 U76 U76 U20 U20 U76 U76 U100 U100 U100 U197 U197 U197 Sync Cond U12 U12 U12 U12 U12 U155 U155 U400 U400 U50 U50 U50 U50 U50 U50 U155 U155 U350 U76 U155 1 155 1400 1400 150 250 350 450 550 650 1 155 2 155 3350 1 10 2 10

39、 3 76 4 76 1 10 2 10 3 76 4 76 180 280 380 1 95.1 2 95.1 3 95.1 10 1 12 2 12 3 12 4 12 5 12 6 155 1 155 1400 1400 150 250 350 450 550 650 1 155 2 155 3350 76 CoaVStearn 596 100 OiVSteam 250 155 CoaVStearn 260 953 25.22 137.4 108.2 4.96 4.96 4.96 4.96 4.96 4.96 31.79 31.79 71.78 0 0 14.1 14.1 0 0 7.0

40、 7.0 17.2 17.2 17.2 40.7 40.7 40.7 13.68 0 0 0 0 0 0.048 25.22 137.4 108.2 4.96 4.96 4.96 4.96 4.96 4.96 31.79 31.79 71.78 U350 U400 80 200 200 16 16 16 16 16 16 80 80 150 10 10 30 30 10 10 30 30 60 60 60 80 80 80 200 6 6 6 6 6 80 80 200 200 16 16 16 16 16 16 80 80 150 350 I CoaVStearn 1.915 I 4.468

41、 40 0 Nuclear N/A N/A -50 1.017 -50 1.050 -50 1.050 -10 1.050 -10 1.050 -10 1.050 -10 1.050 -10 1.050 -10 1.050 -50 1.050 -50 1.050 -25 1.050 0 1.035 0 1.035 -25 1.035 -25 1.035 0 1.035 0 1.035 -25 1.035 -25 1.035 0 1.025 0 1.025 0 1.025 0 1.02 0 1.02 0 1.02 -50 0.98 0 1.014 0 1.014 0 1.014 0 1.014

42、0 1.014 -50 1.014 -50 1.017 -50 1.05 -50 1.05 -10 1.05 -10 1.05 -10 1.05 -10 1.05 -10 1.05 -10 1.05 -50 1.05 -50 1.05 -25 1.05 PG this indudes lines, cables, transformers, phas-shifter, and tie-lines. All pu quantities are on 100 MVA base. Areas A and B may be further interconnected by a DC link, ba

43、sed upon reference 3. Table 13 shows the two-terminal DC transmission line data. ID# = AP = Dur 5 at = Con = LTE = STE = Tr = Table12-BranchDate Branch identifier. Inter area branches are indicated by double letter ID. Circuits on a common tower have hyphenated 10%. Permanent Outage kte (outages/par

44、). Permanent Outage Duration (Hours). Transient Outage Rate (outages/year). Continuous rating. Long-time emergency rating (24 hour). Short-time emergency rating (15 minute). Transformer off-nominal ratio. Transformer branches are indicated by Tr # 0. ID Fron # Bus 1 To Bus A1 101 A4 102 A5 102 A6 10

45、3 A7 103 A8 104 A9 105 A10 106 All 107 AB1 107 A12-1 108 A152 108 A14 109 A15 109 A16 110 A17 110 A18 111 A19 111 A20 112 A21 112 A22 113 AB2 113 A23 114 A24 115 A25-1 115 A25-2 115 A26 115 A27 116 A28 116 A29 117 A30 117 A31-1 118 A31-2 118 A32-1 119 A32-2 119 A33-1 120 A33-2 120 A34 121 AB3 123 81

46、 201 82 201 83 201 84 202 85 202 86 203 87 203 m204 89 205 810 206 811 207 812-1 208 8152 208 814 209 815 209 816 210 817 210 818 211 819 211 820 212 821 212 822 213 823 214 824 215 8251 215 8252 215 826 215 827 216 828 216 829 217 830 217 831-1 218 831-2 218 832-1 219 832-2 219 833-1 220 833-2 220

47、834 221 g ;3 102 103 105 104 106 109 124 109 110 110 108 203 109 110 111 112 111 112 113 114 113 123 123 215 116 116 121 121 124 117 119 118 122 121 121 120 120 123 123 122 217 202 203 205 204 206 209 224 209 210 210 208 209 210 21 1 212 211 212 213 214 21 3 223 223 216 216 221 221 224 217 219 218 2

48、22 221 221 220 220 223 223 222 L -Perm- T mile:; AD Dur - 3 .24 16 55 51 10 22 33 10 33 39 10 50 .4a 10 31 .38 10 0 .02 768 27 .36 10 .34 10 16 .30 10 42 .44 10 43 .44 10 43 .44 10 0 .02 768 0 .02 768 0 .02 768 0 .02 768 33 .40 11 29 39 11 33 .40 11 67 .52 11 60 .49 11 52 .47 11 27 .38 11 12 .33 11

49、34 .41 11 34 .41 11 36 .41 11 18 .35 11 16 .34 11 32 11 .54 11 18 .35 11 18 .35 11 27.5 .38 11 27.5 .38 11 15 .34 11 15 .34 11 47 .45 11 51 .46 11 3 .24 16 55 .51 10 22 .33 10 33 39 10 50 .48 10 31 .38 10 0 .02 768 27 .36 10 23 .34 10 16 .33 35 16 .30 10 43 .44 10 43 .44 10 0 .02 768 0 .02 768 0 .02 768 0 .02 768 33 .40 11 29 .39 11 33 .40 11 67 .52 11 60 .49 11 27 .38 11 12 .33 11 34 .41 11 34 .41 11 36 .41 11 18 .35 11 16 .34 11 10 .32 11 73 .54 11 18 .55 11 18 35 11 27.5 .38 11 27.5 .38 11 15 34 11 15 .34 11 47 .45 11 :; .33 35 ID From To # BusBus L -Per miles r

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报