收藏 分享(赏)

微积分发展历程..doc

上传人:精品资料 文档编号:7998504 上传时间:2019-06-03 格式:DOC 页数:12 大小:191.13KB
下载 相关 举报
微积分发展历程..doc_第1页
第1页 / 共12页
微积分发展历程..doc_第2页
第2页 / 共12页
微积分发展历程..doc_第3页
第3页 / 共12页
微积分发展历程..doc_第4页
第4页 / 共12页
微积分发展历程..doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、微积分发展历程(一)一、数学无穷发展的萌芽无穷作为一个极富迷人魅力的词汇,长期以来就深深激动着人们的心灵。彻底弄清这一概念的实质成为维护人类智力尊严的一种需要。而数学是“研究无限的学科”,因此数学就责无旁贷地担当起征服无穷的重任。我们在本文中将简要介绍一下数学中无穷思想发展的历程早在远古时代,无限的概念就比其它任何概念都激动着人们的感情,而且远在两千年以前,人们就已经产生了对数学无穷的萌芽认识。在我国,著名的庄子一书中有言:“一尺之棰,日取其半,而万世不竭。”从中就可体现出我国早期对数学无穷的认识水平。而我国第一个创造性地将无穷思想运用到数学中,且运用相当自如的是魏晋时期著名数学家刘徽。他提出

2、用增加圆内接正多边形的边数来逼近圆的“割圆术”,并阐述道:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”可见刘徽对数学无穷的认识已相当深刻,正是以“割圆术”为理论基础,刘徽得出徽率,而其后继者祖冲之更是得出了圆周率介于 3.1415926 与 3.1415927之间的领先国外上千年的惊人成果。在国外,早在毕达哥拉斯关于不可公度量的发现及关于数与无限这两个概念的定义中已孕育了微积分学的关于无穷的思想方法。德谟克利特和柏拉图学派探索过无穷小量观念。欧多克索斯、安蒂丰、数学之神阿基米德所运用的穷竭法已备近代极限理论的雏形,尤其是阿基米德对穷竭法应用之熟练,使后人感到他在当时

3、就已接近了微积分的边缘。由此,我们可以看到在数学无穷思想发展之初,古人就已在这个领域开创了一个光辉的起点。虽说,古人对无穷已有了较深刻认识,然而人们对无限的认识是缺乏严密的逻辑基础的。可以说,对于只熟知有限概念的人们来说“无限”这一概念仍然是陌生与神秘的。芝诺悖论的提出清楚地表明了这一点。芝诺,公元前五世纪中叶古希腊哲学家。他提出的四个悖论虽是哲学命题。但却对数学无穷思想的发展产生了直接且深远影响。这里仅举其悖论之一。阿基里斯悖论:跑得最快的阿基里斯永远追不上爬得最慢的乌龟。大意是说甲跑的速度远大于乙,但乙比甲先行一段距离,甲为了赶上乙,须超过乙开始的 A 点,但甲到了 A 点,则乙已进到 A

4、1 点,而当甲再到 A1 点,则乙又进到A2 点,依次类推,直到无穷,两者距离虽越来越近,但甲永远在乙后面而追不上乙。这显然违背人们常识的芝诺悖论,因与无限问题密切相连,就使得古希腊人对无穷有些望之却步静而远之了。同时也导致古希腊数学家不得不把无限排斥在自己的推理之外了。芝诺悖论就这样一直困惑着人们,问题的症结何在呢?这里我们不得不提到一个伟大的数学家(物理学家)阿基米德(Archimedes,约公元前 287212) ,阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法” ,即我们今天所说的逐步近似

5、求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。 微积分发展历程(二)微积分学的诞生随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为

6、据,成功运用无限过程的运算,创立了微积分学。这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor) 、麦克劳林(C.Maclaurin) 、棣莫弗( A.de Moivre) 、斯特林(J.Stirling)等。泰勒(1685_1731)做过英国皇家学会秘书。他在 1715 年出版的正的和反的增量方

7、法一书中,陈述了他早在 1712 年就已获得的著名定理其中 v 为独立变量 z 的增量, 和23 2. .11vvxzxxzzAA .x为流数。泰勒假定 z 随时间均匀变化,故 为常数,从而上述公式相当于现代. .形式的“泰勒公式”: 。2!hfxhffxf泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。泰勒公式在 x=0 时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把 x=0 时的泰勒级数称为“麦克劳林级数” 。麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代

8、表性著作流数论 ,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。 流数论中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。麦克劳林之后,英国数学陷入了长期停滞的状态。微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。2)积分技术与椭圆积分18 世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各

9、类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。在这方面,积分技术的推进尤为明显。当 18 世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。例如雅各布伯努利在求双纽线(在极坐标下方程为 )弧长时,得到弧长2cosr积分 。在天文学中很重要的椭圆弧长计算则引导到积分240rasdr。欧拉在 1774 年处理弹性问题时也得到积分2021tkt。所有这些积分都属于后来所说的“椭圆积分”的范畴,204xxda它们既不能用代数函数,也不能用通常的初等超越函数(如三角函数、对数函数等)表示出来。椭圆积分的一般形

10、式是 。勒让德后来将所有的椭PxdR圆积分归结为三种基本形式。在 18 世纪,法尼亚诺、欧拉、拉格朗日和勒让德等还就特殊类型的椭圆积分积累了大量结果。对椭圆积分的一般研究在 19 世纪20 年代被阿贝尔和雅可比分别独立地从反演的角度发展为深刻的椭圆函数理论。微积分发展历程(三)3)牛顿的“流数术”牛顿(Isaac Newton ,16421727)于伽利略去世那年1642 年(儒略历)的圣诞出生于英格兰肯郡伍尔索普村一个农民家庭,是遗腹子,且早产,生后勉强存活。少年牛顿不是神童成绩并不突出,但酷爱读书与制作玩具。17岁时,牛顿被母亲从他就读的格兰瑟姆中学召回田庄务农,但在牛顿的舅父 W .埃斯

11、库和格兰瑟姆中学校长史托克思的竭力劝说下,牛顿的母亲在九个月后又允许牛顿返校学习。史托克思校长的劝说辞中,有一句话可以说是科学史上最幸运的预言,他对牛顿的母亲说:“在繁杂的农务中埋没这样一位天才,对世界来说将是多么巨大的损失!”牛顿于 1661 年入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作。三一学院至今还保存着牛顿的读书笔记,从这些笔记可以看出,就数学思想的形成而言,笛卡儿的几何学和沃利斯的无穷算术对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。1665 年 8 月,剑桥大学因瘟疫流行而关闭,牛顿离校返乡,随后在家乡躲避瘟疫的两年,竟成为牛顿科学

12、生涯中的黄金岁月。制定微积分,发现万有引力和颜色理论,可以说牛顿一生大多数科学创造的蓝图,都是在这两年描绘的。流数术的初建牛顿对微积分问题的研究始于 1664 年秋,当时他反复阅读笛卡儿几何学 ,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。说在此时,牛顿首创了小 o 记号表示 x 的无限小且最终趋于零的增量。1665 年夏至 1667 年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展。据他自述,1665 年 11 月发明“正流数术” (微分法) ,次年5 月又建立了“反流数术” (积分法) 。1666 年 10 月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以流

13、数简论 (Tract on Fluxions)著称,当时虽未正式发表,但在同事中传阅。 流数简论 (以下简称简论 )是历史上第一篇系统的微积分文献。流数简论反映了牛顿微积分的运动学背景。该文事实上以速度形式引进了“流数” (即微商)概念,虽然没有使用“流数”这一术语。牛顿在简论中提出微积分的基本问题如下:(a)设有两个或更多个物体 A,B,C,在同一时刻内描画线段x,y,z, 。已知表示这些线段关系的方程,求它们的速度 p,q,r,的关系。(b)已知表示线段 x 和运动速度 p、q 之比 的关系方程式,求另一线段y。牛顿对多项式情形给出(a)的解法。以下举例说明牛顿的解法。已知方程 ,牛顿分别

14、以 和 代换方程中330xabdyxpoyq的 x 和 y,然后利用二项式定理,展开得32232230popoqoydab消去和为零的项 ,得330xabdy,以 o 除之,得2223poxpoqoabp3y这时牛顿指出“其中含 o 的那些项为无限小” ,略去这些无限小,得230pxdqyabp即所求的速度 p 与 q 的关系。牛顿对所有的多项式给出了标准的算法,即对多项式 ,问题(a)的解为,ijjfxy0ijjipqaxy对于问题(b) ,牛顿的解法实际上是问题(a)的解的逆运算,并且也是逐步列出了标准算法。特别重要的是, 简论中讨论了如何借助于这种逆运算来求面积,从而建立了所谓“微积分基

15、本定理” 。牛顿在简论中是这样推导微积分基本定理的:如上图,设 ab=x,abc=y 为已知曲线 q=f(x)下的面积,作deabad be=p=1。当线 cbe 以单位速度向右移动时, eb 扫出面积 abed=x,变化率 ;cb 扫出面积abc=y,变化率 , 。由1dxptdyqtxpt此得 ,/yqft这就是说,面积 y 在点 x 处的变化率是曲线在该处的 q 值。这就是微积分基本定理。利用问题(b)的解法可求出面积 y。作为例子,牛顿算出纵坐标为 曲线下的面积是 ;反之,纵坐标n1nx为 的曲线真切线斜率为 。当然, 简论中对微积分基本定理的论述并1nx nxedacqbyx p=I

16、fg不能算是现代意义下的严格证明。牛顿在后来的著作中对微积分基本定理又给出了不依赖于运动学的较为清楚的证明。在牛顿以前,面积总是被看成是无限小不可分量之和,牛顿则从确定面积的变化率入手通过反微分计算面积。前面讲过,面积计算与求切线问题的互逆关系,以往虽然也曾被少数人在特殊场合模糊地指出,但牛顿却能以足够的敏锐与能力将这种互逆关系明确地作为一般规律揭示出来,并将其作为建立微积分普遍算法的基础。正如牛顿本人在流数简论中所说:一旦反微分问题可解,许多问题都将迎刃而解。这样,牛顿就将自古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法正、反流数术亦即微分与积分,并证明了二者的互逆关系而将这两类

17、运算进一步统一成整体。这是他超越前人的功绩,正是在这样的意义下,我们说牛顿发明了微积分。在流数简论的其余部分,牛顿将他建立的统一算法应用于求曲线切线、曲率、拐点、曲线求长、求积、求引力与引力中心等 16 类问题,展示了他的算法的极大的普遍性与系统性。流数术的发展流数简论标志着微积分的诞生,但它在许多方面是不成熟的。牛顿于1667 年春天回到剑桥,对自己的微积分发现未作宣扬。他在这一年 10 月当选为三一学院成员,次年又获硕士学位,并不是因为他在微积分方面的工作,而是因为在望远镜制作方面的贡献。但从那时起直到 1693 年大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后

18、定成了三篇微积分论文,它们分别是:(1) 运用无限多项方程的分析 (De Analysi per Aequationes Numero Terminorum Infinitas,简称分析学 ,完成于 1669 年) ;(2) 流数法与无穷级数 (Methodus Fluxionum et Serierum Infinitarum,简称流数法 ,完成于 1671 年) ;(3) 曲线求积术 (Tractatus de Quadratura Curvarum,简称求积术 ,完成于 1691 年) 。这三篇论文,反映了牛顿微积分学说的发展过程,并且可以看到,牛顿对于微积分的基础先后给出了不同的解释。

19、第一篇分析学是牛顿为了维护自己在无穷级数方面的优先权而作。1668 年苏格兰学者麦卡托(N.Mercator )发表了对数级数的结果,这促使牛顿公布自己关于无穷级数的成果。 分析学利用这些无穷级数来计算流数、积分以及解方程等,因此分析学体现了牛顿的微保健与无穷级数紧密结合的特点。关于微积分本身, 分析学有简短的说明。论文一开始就叙述了计算曲线下面积的法则。设有 表示的曲线,牛顿论证所求面积为yfxmnyx。牛顿在论证中取 x 而不是时间 t 的无限小增量“瞬”为 o,以/mnz代 x, 代 z,则ooy/mnoyo用二项式定理展示后以 o 除两边,略去 o 的项,即得 。反过来就mnyx知曲线

20、 下的面积是 。牛顿接着给出了另一条法则:若mnyx/mnzxy 值是若干项之和,那么所求面积就是由其中每一项得到的面积之和,这相当于逐项积分定理。由上述可知,牛顿分析学以无限小增量“瞬”为基本概念,但却回避了流数简论中的运动学背景而将“瞬”看成是静止的无限小量,有时直截了当令为零,从而带上了浓厚的不可分量色彩。第二篇论文流数法可以看作是 1666 年流数简论的直接发展。牛顿在其中又恢复了运动学观点,但对以物体速度为原形的流数概念作了进一步提炼,并首次正式命名为“流数” (fluxion) 。牛顿后来对流数法中的流数概念作了如下解释:“我把时间看作是连续的流动或增长,而其他量则随着时间而连续增

21、长,我从时间的流动性出发,把所有其他量的增长速度称之为流数,又从时间的瞬息性出发,把任何其他量在瞬息时间内产生的部分称之为瞬” 。流数法以清楚明白的流数语言表述微积分的基本问题为:“已知表示量的流数间的关系的方程,求流量间的关系” 。流数语言的使用,使牛顿的微积分算法在应用方面获得了更大的成功。无论是分析学还是流数法都是以无限小量作为微积分算法的谁基础,所不同的是:在流数法中变量 x,y 的瞬 , 随时间瞬 o 而连poq续变化;而在分析学中变量 x,y 的瞬则是某种不依赖于时间的固定的无限小微元。大约到 17 世纪 80 年代中,牛顿关于微积分的基础在观念上发生了新的变革,这就是“首末比方法

22、”的提出。首末比法最先以几何形式在自然哲学的数学原理一书中发布,其详尽的分析表述则是在其第三篇微积分论文曲线求积术中给出的。曲线求积术是牛顿最成熟的微积分著述。牛顿在其中改变了对无限小量的依赖并批评自己过去那种随意忽略无限小瞬 o 的做法:“在数学中,最微小的误差也不能忽略。在这里,我认为数学的量不是由非常小的部分组成的,而是用连续的运动来描述” 。在此基础上定义了流数概念之后,牛顿写道:“流数之比非常接近于在相等但却很小的时间间隔内生成的流量的增量比。确切地说,它们构成增量的最初比” 。牛顿接着借助于几何解释把流数理解为增量消逝时获得的最终比。他举例说明自己的新方法如下:为了求 的流数,设

23、x 变为 , 则变为nyxonx,构成两变化的“最初比”:12nnno,然后“设增量 o 消逝,它们的最12nnnxxxo终比就是 ”,这也是 x 的流数与 的流数之比。1n n这就是所谓“首末比方法” ,它相当于求函数自变量与因变量变化之比的极限,因而成为极限方法的先导。牛顿在曲线求积术中还第一次引进了后来被普遍采用的流数记号: ,.x, 表示变量 x,y,z 的一次流数(导数) , , , 表示二次流数,.y.z .x.y.z, , 表示三次流数,等等。x牛顿对于发表自己的科学著作态度谨慎。除了两篇光学著作,他的大多数菱都是经朋友再三催促才拿出来发表。上述三篇论文发表都很晚,其中最先发表的

24、是最后一篇曲线求积术 ,1704 年载于光学附录;分析学发表于 1711 年;而流数法则迟至 1736 年才正式发表,当时牛顿已去世。牛顿微积分学说最早的公开表述出现在 1687 年出版的力学名著自然哲学的数学原理 (Philosophiae naturalis principia mathematica,以下简称原理 )之中,因此原理也成为数学史上的划时代著作。微积分发展历程(四)原理与微积分原理中并没有明显的分析形式的微积分,整部著作是以综合几何的语言写成的。但牛顿在第一卷第 1 章开头部分通过一组引理(共 11 条)建立了“首末比法” ,这正是他后来在曲线求积术中作为流数运算基础而重新提

25、出的方法,不过在原理中,首末比方法本身也强烈地诉诸几何直观。第一卷引理 1:“量以及量之比,若在一有限时间内连续趋于相等,并在该时间结束前相互接近且其差可小于任意给定量,则它们最终也变为相等” ,可以看作是初步的极限定义。在随后的引理中牛顿便借极限过程来定义曲边形的面积:如图 6.6,在曲线 acE 与直线 Aa,AE 所围成的图形 AacE 中内接任意个数的矩形 Ab,Bc,Cd,同时作矫形 akbl,bLcm ,cMdn,。牛顿首先设所有的底 AB,BC ,CD,DE ,皆相等,证明了“当这些矩形的宽无限缩小而它们的个数无限增加时,内接形 AkbLcMdD,外接形 AalbmcndoE 与

26、曲线abcdE 相互的最终比是等量比” 。然后指出当矩形之宽互不相等(如图设最大宽度为 AF)但都无限缩小时,上述最终比仍是等量比。牛顿还证明书了:给定曲线弧 以及相应的弦和切线段,当点 A 与 B“相接近而最终相合时” , “弦、弧AB及切线间相互的最终比为等量比” ,等等。牛顿预见到首末比方法可能遭受的批评,并意识到争论的焦点将在于“最终比”概念,于是在前述引理的评注中对什么是“最终比”作了进一步说明:“消逝量的最终比实际上并非最终量之比,而是无限减小的量之比所趋向的极限。它们无限接近这个极限,其差可小于任意给定的数,但却永远不会超过它,并且在这些量无限减小之间也不会达到它。 ”尽管原理表

27、现出以极限方法作为微积分基础的强烈倾向,但并不意味着牛顿完全摒弃无限小观点。在第二卷第 2 章中,人们可以看到无限小瞬方法的陈述:“任何生成量(genitum)的瞬,等于生成经的各边的瞬乘以这些边的幂指数及系数并逐项相加。 ”此处所谓“生成量” ,即函数概念的雏形。牛顿说明这类量的例子有“积、商、根、”等,并把它们看成是“变化的和不定的” ;生成量的瞬则是指函数的微分。因此上述陈述实际上相当于一些微分运算法则。例如牛顿分别以 a,b,c ,表示任意量 A,B,C,的瞬,他证明了AB 的瞬等于 , 的瞬等于 , 的瞬等于 ,一般幂 的BAn1na1nanmAM d oA B F C D EaK

28、L c nl f瞬等于 ,等等。nmaA原理在创导首末比方法的同时保留了无限小瞬,这种做法常常被认为自相矛盾而引起争议。实际上,在牛顿的时代,建立微积分严格时,坚持对微积分基础给出不同解释,说明了他对微积分基础所存在的困难的深邃洞察和谨慎态度。原理被爱因斯坦盛赞为“无比辉煌的演绎成就” 。全书从三条基本的力学定律出发,运用微积分工具,严格地推导证明了包括开普勒行星运动三大定律、万有引力定律等在内有一系列结论,并且还将微积分应用于流体运动、声、光、潮汐、彗星乃至宇宙体系,充分显示了这一新数学工具的威力。原理中的微积分命题虽然都采用了几何形式来叙述、证明,但正如牛顿本人后来解释的那样:发现原理中的

29、绝大多数命题是依靠使用了“新分析法” ,然后再“综合地证明” 。事实上,我们在前面已经看到,牛顿发明微积分主要是依靠了高度的归纳算法的能力。并没有多少综合几何的背景。他 1664 年参加巴罗主考的三一学院津贴生考试时,因欧氏几何成绩不佳差一点未能通过。而几乎是在同时,他开始研究微积分并在不到一年的时间里就做了邮基本发现。牛顿后来才重新钻研了巴罗译注的几何原本 ,弥补了这方面的不足,其结果是原理中的力学综合体系。然而就数学而言,牛顿在原理中给微积分披上的几何外衣,使他的流数术显得僵硬呆板。固守牛顿的几何形式,在 18 世纪阻碍了英国数学的发展。牛顿的科学贡献是多方面的。在数学上,除了微积分,他的

30、代数名著普遍算术 ,包含了方程论的许多重要成果,如虚数根必成对出现、笛卡儿符号法则的推广、根与系数的幂和公式等等;他的几何杰作三次曲线枚举 ,首创对三次曲线的整体分类研究,是解析几何发展新的一页;在数值分析领域,今天任何一本教程都不能不提到牛顿的名字:牛顿迭代法(牛顿拉弗森公式) 、牛顿格列高里公式、牛顿斯特林公式、;牛顿还是几何概率的最早研究者。牛顿是一位科学巨人,但他有一次在谈到自己的光学发现时却说:“如果我看得更远些,那是因为我站在巨人的肩膀上” 。还有一次,当别人问他是怎样作出自己的科学发现时,他的回答是:“心里总是装着研究的问题,等待那最初的一线希望渐渐变成普照一切的光明!”据他的助

31、手回忆,牛顿往往一天伏案 18 小时左右,仆人常常发现送到书房的午饭和晚饭一口未动。偶尔去食堂用餐,出门便陷入思考,兜个圈子又回到住所.惠威尔(W.Whewell)在归纳科学史中写道:“除了顽强的毅力和失眠的习惯,牛顿不承认自己与常人有什么区别” 。可能是由于早年经历所致,牛顿性格沉郁内向,不善在公众场合表述思想,但这却并没有影响他后来出任伦敦造币局局长和皇家学会连选连任,领导这个最高学术机构长达四分之一世纪。牛顿终身未婚,晚年由外甥女凯瑟琳协助管家。牛顿的许多言论、轶闻,就是靠凯瑟琳和她的丈夫康杜德的记录留传下来的。家喻户晓的苹果落地与万有引力的故事,就是凯瑟琳告诉法国哲学家伏尔泰并被后者写

32、进牛顿哲学原理一书中。牛顿 1727 年因患肺炎与痛风而逝世,葬于威斯特敏斯特大教堂。当时参加了葬礼的伏尔泰亲眼目睹英国的大人物争抬牛顿的灵柩而无限感叹。剑桥三一学院教堂大厅内立有牛顿全身雕像。牛顿去世后,外甥女凯瑟琳夫妇在亲属们围绕遗产的纠纷中不惜代价保存了牛顿的手稿。现存牛顿手稿中,仅数学部分就达 5000 多页。微积分发展历程(五)6)牛顿与莱布尼茨牛顿和莱布尼茨都是他们时代的巨人。就微积分的创立而言,尽管在背景、方法和形式上存在差异、各有特色,但二者的功绩是相当的。他们都使微积分成为能普遍适用的算法,同时又都将面积、体积及相当的问题归结为反切线(微分)运算。应该说,微积分能成为独立的科

33、学并给整个自然科学带来革命性的影响,主要是靠了牛顿与莱布尼茨的工作。在科学史上,重大的真理往往在条件成熟的一定时期由不同的探索者相互独立地发现,微积分的创立,情形也是如此。我们知道,牛顿在 1687 年以前没有公开发表过任何微积分的文章,而莱布尼茨则在 1684 和 1686 年分别发表了微分学与积分学的论文。1687 年当牛顿在原理中首次发布他的流数方法时,他在前言中作了这样一段说明:“十年前,我在给学问渊博的数学家莱布尼茨的信中曾指出:我发现了一种方法,可用以求极大值、极小值、作切线以及解决其他类似的问题,而且这种方法也适用于无理数,。这位名人回信说他也发现了类似的方法,并把他的方法给我看

34、了。他的方法与我的大同小异,除了用语、符号、算式和量的产生方式外,没有实质性区别。 ”这可以说是对微积分发明权问题的客观评述,遗憾的是,它在原理第3 版时被删去了,原因是期间牛顿与莱布尼茨之间发生了优先权问题的争执。争端是由局外人挑起的。瑞士数学家德丢勒(N.F. de Duillier)1699 年在一本小册子中提出“牛顿是微积分的第一发明人” ,而莱布尼茨作为“第二发明人” , “曾从牛顿那里有所借鉴” 。莱布尼茨立即对此作了反驳。1712 年,英国皇家学会专门指定了一个委员会进行调查,并于翌年公布了一份著名的通报 ,宣布“确认牛顿为第一发明人” 。这引起了莱布尼茨的申诉。争论在双方的追随

35、者之间越演越烈,直到莱布尼茨和牛顿都去世以后,才逐渐平息并得到解决。经过调查,特别是对莱布尼茨手稿的分析,证实两人确实是相互独立地完成了微积分的发明。就发明时间而言,牛顿早于莱布尼茨;就发表时间而言,莱布尼茨则先于牛顿。值得补充的是,尽管发生了纠纷,两位学者却从未怀疑过对方的科学才能。有一则记载说,1701 年在柏林王宫的一次宴会上,当普鲁士王问到对牛顿的评价时,莱布尼茨回答道:“综观有史以来的全部数学,牛顿做了一多半的工作” 。优先公争论被认为是“科学史上最不幸的一章” 。微积分发明权的争论,对整个 18 世纪英国与欧洲大陆国家在数学发展上的分道扬镳,产生了严重影响。虽然牛顿在微积分应用方面的辉煌成就极大地促进了科学的进步,但由于英国数学家固守牛顿的传统而使自己逐渐远离分析的主流。分析的进步在 18 世纪主要是由欧洲大陆国家的数学家在发展莱布尼茨微积分方法的基础上而取得的。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报