收藏 分享(赏)

进程之间通信.doc

上传人:tkhy51908 文档编号:7673798 上传时间:2019-05-23 格式:DOC 页数:16 大小:120.50KB
下载 相关 举报
进程之间通信.doc_第1页
第1页 / 共16页
进程之间通信.doc_第2页
第2页 / 共16页
进程之间通信.doc_第3页
第3页 / 共16页
进程之间通信.doc_第4页
第4页 / 共16页
进程之间通信.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、1、 管道概述及相关 API 应用1.1 管道相关的关键概念管道是 Linux 支持的最初 Unix IPC 形式之一,具有以下特点: 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道; 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程); 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。 1.2 管道的

2、创建:#include int pipe(int fd2)该函数创建的管道的两端处于一个进程中间,在实际应用中没有太大意义,因此,一个进程在由 pipe()创建管道后,一般再 fork 一个子进程,然后通过管道实现父子进程间的通信(因此也不难推出,只要两个进程中存在亲缘关系,这里的亲缘关系指的是具有共同的祖先,都可以采用管道方式来进行通信)。1.3 管道的读写规则:管道两端可分别用描述字 fd0以及 fd1来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字 fd0表示,称其为管道读端;另一端则只能用于写,由描述字 fd1来表示,称其为管道写端。如果试图从管道写端读取数据

3、,或者向管道读端写入数据都将导致错误发生。一般文件的I/O 函数都可以用于管道,如 close、read、write 等等。从管道中读取数据: 如果管道的写端不存在,则认为已经读到了数据的末尾,读函数返回的读出字节数为 0; 当管道的写端存在时,如果请求的字节数目大于 PIPE_BUF,则返回管道中现有的数据字节数,如果请求的字节数目不大于 PIPE_BUF,则返回管道中现有数据字节数(此时,管道中数据量小于请求的数据量);或者返回请求的字节数(此时,管道中数据量不小于请求的数据量)。注:(PIPE_BUF 在 include/linux/limits.h 中定义,不同的内核版本可能会有所不同

4、。Posix.1 要求 PIPE_BUF 至少为 512 字节,red hat 7.2 中为 4096)。 关于管道的读规则验证:/* readtest.c */#include #include #include main()int pipe_fd2;pid_t pid;char r_buf100;char w_buf4;char* p_wbuf;int r_num;int cmd;memset(r_buf,0,sizeof(r_buf);memset(w_buf,0,sizeof(r_buf);p_wbuf=w_buf;if(pipe(pipe_fd)0)close(pipe_fd0);/

5、readstrcpy(w_buf,“111“);if(write(pipe_fd1,w_buf,4)!=-1)printf(“parent write overn“);close(pipe_fd1);/writeprintf(“parent close fd1 overn“);sleep(10);/* 程序输出结果:* parent write over* parent close fd1 over* read num is 4 the data read from the pipe is 111* 附加结论:* 管道写端关闭后,写入的数据将一直存在,直到读出为止.*/ 向管道中写入数据: 向

6、管道中写入数据时,linux 将不保证写入的原子性,管道缓冲区一有空闲区域,写进程就会试图向管道写入数据。如果读进程不读走管道缓冲区中的数据,那么写操作将一直阻塞。 注:只有在管道的读端存在时,向管道中写入数据才有意义。否则,向管道中写入数据的进程将收到内核传来的 SIFPIPE 信号,应用程序可以处理该信号,也可以忽略(默认动作则是应用程序终止)。 对管道的写规则的验证 1:写端对读端存在的依赖性#include #include main()int pipe_fd2;pid_t pid;char r_buf4;char* w_buf;int writenum;int cmd;memset(

7、r_buf,0,sizeof(r_buf);if(pipe(pipe_fd)0)sleep(1); /等待子进程完成关闭读端的操作close(pipe_fd0);/writew_buf=“111“;if(writenum=write(pipe_fd1,w_buf,4)=-1)printf(“write to pipe errorn“);elseprintf(“the bytes write to pipe is %d n“, writenum);close(pipe_fd1);则输出结果为: Broken pipe,原因就是该管道以及它的所有 fork()产物的读端都已经被关闭。如果在父进程中

8、保留读端,即在写完 pipe 后,再关闭父进程的读端,也会正常写入 pipe,读者可自己验证一下该结论。因此,在向管道写入数据时,至少应该存在某一个进程,其中管道读端没有被关闭,否则就会出现上述错误(管道断裂,进程收到了 SIGPIPE 信号,默认动作是进程终止)对管道的写规则的验证 2:linux 不保证写管道的原子性验证#include #include #include main(int argc,char*argv)int pipe_fd2;pid_t pid;char r_buf4096;char w_buf4096*2;int writenum;int rnum;memset(r_

9、buf,0,sizeof(r_buf);if(pipe(pipe_fd)0)close(pipe_fd0);/writememset(r_buf,0,sizeof(r_buf);if(writenum=write(pipe_fd1,w_buf,1024)=-1)printf(“write to pipe errorn“);elseprintf(“the bytes write to pipe is %d n“, writenum);writenum=write(pipe_fd1,w_buf,4096);close(pipe_fd1);输出结果:the bytes write to pipe 1

10、000the bytes write to pipe 1000 /注意,此行输出说明了写入的非原子性the bytes write to pipe 1000the bytes write to pipe 1000the bytes write to pipe 1000the bytes write to pipe 120 /注意,此行输出说明了写入的非原子性the bytes write to pipe 0the bytes write to pipe 0结论:写入数目小于 4096 时写入是非原子的! 如果把父进程中的两次写入字节数都改为 5000,则很容易得出下面结论: 写入管道的数据量大

11、于 4096 字节时,缓冲区的空闲空间将被写入数据(补齐),直到写完所有数据为止,如果没有进程读数据,则一直阻塞。 1.4 管道应用实例:实例一:用于 shell 管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个 shell 程序(Bourne shell 或 C shell 等)键入 whowc -l 后,相应 shell 程序将创建 who 以及 wc 两个进程和这两个进程间的管道。考虑下面的命令行:$kill -l 运行结果见 附一。 $kill -l | grep SIGRTMIN 运行结果如下:30) SIGPWR 31) SIGSYS 32)

12、SIGRTMIN 33) SIGRTMIN+134) SIGRTMIN+2 35) SIGRTMIN+3 36) SIGRTMIN+4 37) SIGRTMIN+538) SIGRTMIN+6 39) SIGRTMIN+7 40) SIGRTMIN+8 41) SIGRTMIN+942) SIGRTMIN+1043) SIGRTMIN+1144) SIGRTMIN+1245) SIGRTMIN+1346) SIGRTMIN+1447) SIGRTMIN+1548) SIGRTMAX-1549) SIGRTMAX-14实例二:用于具有亲缘关系的进程间通信 下面例子给出了管道的具体应用,父进程通过

13、管道发送一些命令给子进程,子进程解析命令,并根据命令作相应处理。#include #include main()int pipe_fd2;pid_t pid;char r_buf4;char* w_buf256;int childexit=0;int i;int cmd;memset(r_buf,0,sizeof(r_buf);if(pipe(pipe_fd)0)/parent: send commands to childclose(pipe_fd0);w_buf0=“003“;w_buf1=“005“;w_buf2=“777“;w_buf3=“000“;for(i=0;i256)/supp

14、ose child only support 256 commandsprintf(“child: invalid command n“);return -1;printf(“child: the cmd from parent is %dn“, cmd);return 0;1.5 管道的局限性管道的主要局限性正体现在它的特点上: 只支持单向数据流; 只能用于具有亲缘关系的进程之间; 没有名字; 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小); 管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令

15、、或记录)等等; 回页首2、 有名管道概述及相关 API 应用2.1 有名管道相关的关键概念管道应用的一个重大限制是它没有名字,因此,只能用于具有亲缘关系的进程间通信,在有名管道(named pipe 或 FIFO)提出后,该限制得到了克服。FIFO不同于管道之处在于它提供一个路径名与之关联,以 FIFO 的文件形式存在于文件系统中。这样,即使与 FIFO 的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过 FIFO 相互通信(能够访问该路径的进程以及 FIFO的创建进程之间),因此,通过 FIFO 不相关的进程也能交换数据。值得注意的是,FIFO 严格遵循先进先出(first

16、 in first out),对管道及 FIFO 的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。2.2 有名管道的创建#include #include int mkfifo(const char * pathname, mode_t mode)该函数的第一个参数是一个普通的路径名,也就是创建后 FIFO 的名字。第二个参数与打开普通文件的 open()函数中的 mode 参数相同。如果 mkfifo 的第一个参数是一个已经存在的路径名时,会返回 EEXIST 错误,所以一般典型的调用代码首先会检查是否返回该错误,如果确实返回该错误,那么只

17、要调用打开 FIFO的函数就可以了。一般文件的 I/O 函数都可以用于 FIFO,如close、read、write 等等。2.3 有名管道的打开规则有名管道比管道多了一个打开操作:open。FIFO 的打开规则:如果当前打开操作是为读而打开 FIFO 时,若已经有相应进程为写而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为写而打开该 FIFO(当前打开操作设置了阻塞标志);或者,成功返回(当前打开操作没有设置阻塞标志)。如果当前打开操作是为写而打开 FIFO 时,如果已经有相应进程为读而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为读而打开

18、该 FIFO(当前打开操作设置了阻塞标志);或者,返回 ENXIO 错误(当前打开操作没有设置阻塞标志)。对打开规则的验证参见 附 2。 2.4 有名管道的读写规则从 FIFO 中读取数据:约定:如果一个进程为了从 FIFO 中读取数据而阻塞打开 FIFO,那么称该进程内的读操作为设置了阻塞标志的读操作。 如果有进程写打开 FIFO,且当前 FIFO 内没有数据,则对于设置了阻塞标志的读操作来说,将一直阻塞。对于没有设置阻塞标志读操作来说则返回-1,当前 errno 值为 EAGAIN,提醒以后再试。 对于设置了阻塞标志的读操作说,造成阻塞的原因有两种:当前 FIFO 内有数据,但有其它进程在

19、读这些数据;另外就是 FIFO 内没有数据。解阻塞的原因则是 FIFO 中有新的数据写入,不论信写入数据量的大小,也不论读操作请求多少数据量。 读打开的阻塞标志只对本进程第一个读操作施加作用,如果本进程内有多个读操作序列,则在第一个读操作被唤醒并完成读操作后,其它将要执行的读操作将不再阻塞,即使在执行读操作时,FIFO 中没有数据也一样(此时,读操作返回 0)。 如果没有进程写打开 FIFO,则设置了阻塞标志的读操作会阻塞。 注:如果 FIFO 中有数据,则设置了阻塞标志的读操作不会因为 FIFO 中的字节数小于请求读的字节数而阻塞,此时,读操作会返回 FIFO 中现有的数据量。向 FIFO

20、中写入数据:约定:如果一个进程为了向 FIFO 中写入数据而阻塞打开 FIFO,那么称该进程内的写操作为设置了阻塞标志的写操作。对于设置了阻塞标志的写操作: 当要写入的数据量不大于 PIPE_BUF 时,linux 将保证写入的原子性。如果此时管道空闲缓冲区不足以容纳要写入的字节数,则进入睡眠,直到当缓冲区中能够容纳要写入的字节数时,才开始进行一次性写操作。 当要写入的数据量大于 PIPE_BUF 时,linux 将不再保证写入的原子性。FIFO 缓冲区一有空闲区域,写进程就会试图向管道写入数据,写操作在写完所有请求写的数据后返回。 对于没有设置阻塞标志的写操作: 当要写入的数据量大于 PIP

21、E_BUF 时,linux 将不再保证写入的原子性。在写满所有 FIFO 空闲缓冲区后,写操作返回。 当要写入的数据量不大于 PIPE_BUF 时,linux 将保证写入的原子性。如果当前 FIFO 空闲缓冲区能够容纳请求写入的字节数,写完后成功返回;如果当前 FIFO 空闲缓冲区不能够容纳请求写入的字节数,则返回EAGAIN 错误,提醒以后再写; 对 FIFO 读写规则的验证:下面提供了两个对 FIFO 的读写程序,适当调节程序中的很少地方或者程序的命令行参数就可以对各种 FIFO 读写规则进行验证。程序 1:写 FIFO 的程序#include #include #include #inc

22、lude #define FIFO_SERVER “/tmp/fifoserver“main(int argc,char* argv)/参数为即将写入的字节数int fd;char w_buf4096*2;int real_wnum;memset(w_buf,0,4096*2);if(mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)#include #include #include #define FIFO_SERVER “/tmp/fifoserver“main(int argc,char* argv)char r_buf4096*2;int fd;int r_size

23、;int ret_size;r_size=atoi(argv1);printf(“requred real read bytes %dn“,r_size);memset(r_buf,0,sizeof(r_buf);fd=open(FIFO_SERVER,O_RDONLY|O_NONBLOCK,0);/fd=open(FIFO_SERVER,O_RDONLY,0);/在此处可以把读程序编译成两个不同版本:阻塞版本及非阻塞版本if(fd=-1)printf(“open %s for read errorn“);exit();while(1)memset(r_buf,0,sizeof(r_buf);

24、ret_size=read(fd,r_buf,r_size);if(ret_size=-1)if(errno=EAGAIN)printf(“no data avlaiblen“);printf(“real read bytes %dn“,ret_size);sleep(1);pause();unlink(FIFO_SERVER);程序应用说明:把读程序编译成两个不同版本: 阻塞读版本:br 以及非阻塞读版本 nbr 把写程序编译成两个四个版本: 非阻塞且请求写的字节数大于 PIPE_BUF 版本:nbwg 非阻塞且请求写的字节数不大于 PIPE_BUF 版本:版本 nbw 阻塞且请求写的字节数

25、大于 PIPE_BUF 版本:bwg 阻塞且请求写的字节数不大于 PIPE_BUF 版本:版本 bw 下面将使用 br、nbr、w 代替相应程序中的阻塞读、非阻塞读验证阻塞写操作:1. 当请求写入的数据量大于 PIPE_BUF 时的非原子性: o nbr 1000 o bwg 2. 当请求写入的数据量不大于 PIPE_BUF 时的原子性: o nbr 1000 o bw 验证非阻塞写操作:1. 当请求写入的数据量大于 PIPE_BUF 时的非原子性: o nbr 1000 o nbwg 2. 请求写入的数据量不大于 PIPE_BUF 时的原子性: o nbr 1000 o nbw 不管写打开的

26、阻塞标志是否设置,在请求写入的字节数大于 4096 时,都不保证写入的原子性。但二者有本质区别:对于阻塞写来说,写操作在写满 FIFO 的空闲区域后,会一直等待,直到写完所有数据为止,请求写入的数据最终都会写入 FIFO;而非阻塞写则在写满 FIFO 的空闲区域后,就返回(实际写入的字节数),所以有些数据最终不能够写入。对于读操作的验证则比较简单,不再讨论。2.5 有名管道应用实例在验证了相应的读写规则后,应用实例似乎就没有必要了。回页首小结:管道常用于两个方面:(1)在 shell 中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘

27、关系的进程间通信,用户自己创建管道,并完成读写操作。FIFO 可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。管道和 FIFO 的数据是字节流,应用程序之间必须事先确定特定的传输“协议“,采用传播具有特定意义的消息。要灵活应用管道及 FIFO,理解它们的读写规则是关键。附 1:kill -l 的运行结果,显示了当前系统支持的所有信号: 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE9) SIGKILL 10) SIGUSR1

28、 11) SIGSEGV 12) SIGUSR213) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO30) SIGPWR 31) SIGSYS 32) SIGRTMIN 33) SIGRTMIN+134) SIGRTMIN+2 35) SIGRTMIN+3 36) SIGRT

29、MIN+4 37) SIGRTMIN+538) SIGRTMIN+6 39) SIGRTMIN+7 40) SIGRTMIN+8 41) SIGRTMIN+942) SIGRTMIN+1043) SIGRTMIN+1144) SIGRTMIN+1245) SIGRTMIN+1346) SIGRTMIN+1447) SIGRTMIN+1548) SIGRTMAX-1549) SIGRTMAX-1450) SIGRTMAX-1351) SIGRTMAX-1252) SIGRTMAX-1153) SIGRTMAX-1054) SIGRTMAX-9 55) SIGRTMAX-8 56) SIGRTMA

30、X-7 57) SIGRTMAX-658) SIGRTMAX-5 59) SIGRTMAX-4 60) SIGRTMAX-3 61) SIGRTMAX-262) SIGRTMAX-1 63) SIGRTMAX除了在此处用来说明管道应用外,接下来的专题还要对这些信号分类讨论。附 2:对 FIFO 打开规则的验证(主要验证写打开对读打开的依赖性) #include #include #include #include #define FIFO_SERVER “/tmp/fifoserver“int handle_client(char*);main(int argc,char* argv)int

31、r_rd;int w_fd;pid_t pid;if(mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)0)handle_client(FIFO_SERVER);int handle_client(char* arg)int ret;ret=w_open(arg);switch(ret)case 0:printf(“open %s errorn“,arg);printf(“no process has the fifo open for readingn“);return -1;case -1:printf(“something wrong with open the fif

32、o except for ENXIO“);return -1;case 1:printf(“open server okn“);return 1;default:printf(“w_no_r return -n“);return 0;unlink(FIFO_SERVER);int w_open(char*arg)/0 open error for no reading/-1 open error for other reasons/1 open okif(open(arg,O_WRONLY|O_NONBLOCK,0)=-1) if(errno=ENXIO)return 0;elsereturn -1;return 1;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报