收藏 分享(赏)

(新课标版)备战2018高考数学二轮复习 方法3.2 填空题的解法教学案.doc

上传人:天天快乐 文档编号:737889 上传时间:2018-04-20 格式:DOC 页数:8 大小:660.50KB
下载 相关 举报
(新课标版)备战2018高考数学二轮复习 方法3.2 填空题的解法教学案.doc_第1页
第1页 / 共8页
(新课标版)备战2018高考数学二轮复习 方法3.2 填空题的解法教学案.doc_第2页
第2页 / 共8页
(新课标版)备战2018高考数学二轮复习 方法3.2 填空题的解法教学案.doc_第3页
第3页 / 共8页
(新课标版)备战2018高考数学二轮复习 方法3.2 填空题的解法教学案.doc_第4页
第4页 / 共8页
(新课标版)备战2018高考数学二轮复习 方法3.2 填空题的解法教学案.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、1方法 3.2 填空题的解法填空题的特征:填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题” 填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活从历年高考成绩看,填空题得分率一直不是很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分因此 ,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不

2、可“小题大做” ,而要达到“准确” ,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫2 解填空题的基本原则:解填空题的基本原则是“小题不能大做” ,基本策略是“巧做” 解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法、合情推理法等【方法要点展示】方法一 直接法:直接法就是从题干给出的条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,直接得出结论这种策略多用于一些定性的问题,是解填空题最常用的策略这类填空题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合

3、理的验证得出正确的结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法 例 1 函数 ()fx, g的定义域都是 D,直线 0x( D) ,与 ()yfx, ()g的图象分别交于 A, B两点,若 |A的值是不等于 的常数,则称曲线 ()f, 为“平行曲线” ,设()lnxfeac( 0, c) ,且 ()yfx, g为区间 0,)的“ 平行曲线” ,1g, ()在区间 (2,3)上的零点唯一,则 a的取值范围是 思路分析:本题是一道函数的新定义问题,函数与方程,可转化为导数与函数的单调性来解的参数,从而得到关于 参数 a的不等式,解不等式可求 出参数的取值范围.【答案

4、】23,lne.2唯一零点等价于函数 ()yhx与函数 ya有唯一交点, 21(ln)xeh,当 x时, ()0hx,函数 ()hx在区间 (2,3)上单调递增,所以函数 ()x与函数 ya有唯一交点等价于 (2)(3)a,即2lnlea,即 的取值范围是23,lne.点评:本题考查新定义问题、函数与方程、导数与函数的单调性,以及学生综合运用知识的能力及运算能力,属难题;高考对函数零点的考查多以选择题或填空题形式出现,根据函数零点或方程的根所在区间求参数的范围应分三步:1.判断函数的单调性;2.利用函数存在性定理,得到参数所满足的不等式;3.解不等式求参数范围. 例 2【广西南宁市 2018

5、届期末】 分别是双曲线 的左、右焦点,过12,F21xyab(0,)ab的直线 与双曲线分别交于点 (点 在右支上) ,若 为等边三角形,则双曲线的方17,0Fl ,AB2ABF程为_思路分析:本题是双曲线的定义和简单几何性质等知识,根据条件求出 的关系是解题的关键,ac【答案】216yx【规律总结】直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键 【举一反三】1.在各项均为正数的等比数列 na中,有 13243516a,则 24a 3【答案】4【解

6、析】 2221324354416aaaa,又等比数列 na的各项均为正数,所以 24. 2. D为 ABC的 边上一点, 2DCB,过 点的直线分别交直线 ABC、 于 EF、 ,若,EF,其中 0,,则 1_【答案】3【解析】因为21,(1)3ADBCmAEnFABnCm,所以2,3mn3方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论这样可大大地简化推理、论证的过程例 3

7、 已知函数 ()12xaf( R)为奇函数,则 a .思路分析:根据奇函数的特点,带入特殊值即可求出 的值.【答案】 【规律总结】求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解 本题中的发现函数过一个定点是本题的运用特值法的前提条件,从而减少了计算量4【举一反三】1. 如图所示,在平行四边形 ABCD 中, AP BD,垂足为 P,且 AP3,则 _.AP AC 【答案】 18【解析】把平行四边形 ABCD 看成正方形,则 P 点为对角线的交点, AC6,则 18. AP AC 方法

8、三 数形结合法对于一些含有几何背景的填 空题,若能数中思形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正 确的结果,Ven n 图、三角函数线、函数的图象及方程的曲线等,都是常用的图形例 4 若 xy, 满足01xy,则 2zxy的最小值为 思路分析:本题是一道线性规划问题,作出图像,结合图像即可【答案】12【规律总结】图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论 求出结果【举一反三

9、】1. 【湖南省郴州市一中 2018 届高三十二月月考】点 分别是函数 、 图像上的点,若MN、 fxg5关于原点对称,则称 是一对“关联点”.已知 , MN、 MN、 24fxx,则函数 、 图像上的“关联点” 有_ 对24gxxfxg【答案】2方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要 从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决例 5 已知奇函数 f

10、x定义域为 ,0,fx为其导函数,且满足以下条件 0x时,3fx; 12f; 2fxf,则不等式 24fx的解集为 .思路分析:本题是一道函数问题,由条件 3xf可构造函数 3()fg,由函数的单调性即可求解【答案】【解析】 0x时,令343()()0fxxffxgg,又 fx为奇函数,所以 gx为偶函数,因为 2fxf,所以114248fff,31()48g,从而62 1()8(|)(|44fxgxxgx解集为点评:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如 ()fxf构造()xfge, ()0ffx构造 ()()xg

11、ef,()xff构造()gx, ()0ff构造 ()f等【举一反三】1. 【华大新高考联盟 2018 届 1 月】设函数 为自然对数的底数) ,当 时,2(3xfemexR恒成立,则实数 的取值范围是_0fxm【答案】 ,6e方法五 归纳推理法做关于归纳推理的填空题的时候,一般是 由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想例 6 图中是应用分形几何学做出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图,7我们彩用 “坐标

12、”来表示图乙各行中的白圈黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数)比如第一行记为 0,1,第二行记为 1,2,第三行记为 4,5,照此下去,第四行中白圈与黑圈的“坐标”为_思路分析:本题中如何求出第四行中白圈与黑圈的“坐标”是解题的一个关键,也是一个难点,观察所给条件不难发现运用特殊到一般的规律进行处理,进而求解【答案】 13,4【规律总结】这类问题是近几年高考的热点解决这类问题的关键是找准归纳对象如本题把函数的前几个值一一列举出来观察前面列出的函数值的规律,归纳猜想一般结论或周期,从而求得问题【举一反三】1.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称

13、为完备数、完美数).如: 6123; 812471; 962481632148.此外,它们都可以表示为 2 的一些连续正整数次幂之和.如 , 4,按此规律, 12可表示为 【答案】 6712【解析】因为 68,又由 127n,解得 n所以 66812(2)67122从考试的角度来看,解填空题只要做对就行,不需要中间过程,正因为不需要中间过程,出错的概率大大增加.我们要避免在做题的过程中产生笔误,这种笔误很难纠错,故解填空题要注意以下几个方面:(1)要认真 审题,明确要求,思维严谨、周密,计算有据、准确.(2)要尽量利用已知的定理、性质及已有的结论.(3)要重视对所求结果的检验.(4)注意从不同的角度分析问题,从而比较用不同的方 法解决题目的速度与准确度,从而快速切题,达到8准确解题的目的.填空题的主要特征是题目小,跨度大,知识覆盖面广,形式灵活,突出考查考生准确、严谨、全面、灵活运用知识的能力.近年来填空题作为命题组改革实验的一个窗口,出现了一些创新题,如阅读理解型、发散开放型、多项选择型、实际应用型等,这些题型的出现,使解填空题的要求更高、更严了.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报