收藏 分享(赏)

3.3.2均匀随机数的产生2.ppt

上传人:mcady 文档编号:7313370 上传时间:2019-05-14 格式:PPT 页数:17 大小:303KB
下载 相关 举报
3.3.2均匀随机数的产生2.ppt_第1页
第1页 / 共17页
3.3.2均匀随机数的产生2.ppt_第2页
第2页 / 共17页
3.3.2均匀随机数的产生2.ppt_第3页
第3页 / 共17页
3.3.2均匀随机数的产生2.ppt_第4页
第4页 / 共17页
3.3.2均匀随机数的产生2.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、3.3.2均匀随机数的产生,复习回顾,2.古典概型与几何概型的区别与联系.,相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个;几何概型要求基本事件有无限多个.,3.几何概型的概率公式.,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.,1.几何概型的定义及其特点?,用几何概型解简单试验问题的方法,1、适当选择观察角度,把问题转化为几何概型求解; 2、把基本事件转化为与之对应的区域D; 3、把随机事件A转化为与之对应的区域d; 4、利用几何概型概率公式计算。 注意:要注意基本事件是等可能的。,例1.

2、假设你家订了一份报纸,送报人可能在早上6:307:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:008:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?,解:以横坐标X表示报纸送到时间,以纵坐标Y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.,对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解.,根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即时间A发生,所以,思考:(会面问题)甲、乙二人约定在 12 点到

3、 5 点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。求二人能会面的概率。,解: 以 X , Y 分别表示甲、乙二人到达的时刻,于是,即 点 M 落在图中的阴影部分.所有的点构成一个正 方形,即有无穷多个结果. 由于每人在任一时刻到达 都是等可能的,所以落在正 方形内各点是等可能的.,二人会面的条件是:,记“两人会面”为事件A,变式:改为其中甲等1小时后离开,乙等2小时后离开,其它不变。,思考:(会面问题)甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。

4、求二人能会面的概率。,例2.取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.,我们在正方形中撒了n颗豆子,其中有m颗豆子落在圆中,则圆周率 的值近似等于,变式练习:,1.在一个边长为a,b(ab0)的矩形内画一个梯形,梯形上下底分别为 ,高为b,向该矩形内随投一点,求所投得点落在梯形内部的概率。,变式2.已知:在一个边长为2的正方形中有一个椭圆(如图),随机向正方形内丢一粒豆子,若落入椭圆的概率为0.3,求椭圆的面积,例3:在半径为1的圆上随机地取两点, 连成一条线,则其长超过圆内等边三角形 的边长的概率是多少?,B,C,D,E,.,o,解:记事件A=弦长超

5、过圆内接 等边三角形的边长,取圆内接 等边三角形BCD的顶点B为弦 的一个端点,当另一点在劣弧 CD上时,|BE|BC|,而弧CD 的长度是圆周长的三分之一, 所以可用几何概型求解,有,则“弦长超过圆内接等边三角形的边长”的概率为,例4:在棱长为3的正方体内任取一点,求这个点到各面的距离大于1/3棱长的概率.,分析:设事件A为点到各面的距离大于1/3棱长,则该事件发生即为棱长为3的正方体所分成棱长为1的二十七个正方体中最中间的正方体中的所有点,是几何概型问题。,“抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的半径为 r)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为a的正方形)的范围内(不与阶砖相连的线重叠),便可获奖.,例5 抛阶砖游戏,玩抛阶砖游戏的人,一般需换购代用“金币”来参加游戏. 那么要问:参加者获奖的概率有多大?,显然,“金币”与阶砖的相对大小将决定成功抛中阶砖的概率.,设阶砖每边长度为a , “金币”直径为d .,a,若“金币”成功地落在阶砖上,其圆心必位于右图的绿色区域A内.,问题化为:向平面区域S (面积为a2)随机投点( “金币” 中心),求该点落在区域A内的概率.,S,于是成功抛中阶砖的概率,由此可见,当d 接近a, p接近于0; 而当d接近0, p接近于1.,0da,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报