1、踏浪而行-小学数学核心素养的前世今生赴哈之行学习汇报(几位小学数学界大师教育思想传递)感触深的是几位名家无不以新课标为理论依据、研究理解新课标,研究的深刻、理解的透彻,所以实践、指导实践均得心应手,所以建议大家新课标不要束之高阁要时常拿出来读一读晒一晒。感触颇深之二就是迎面扑来的课改新潮。数学核心素养新东西,都在研究,这些个大家们也在研究,他们都被推动了,这是至上而下发起,作为我们就是踏浪而行,来什么样的浪我们决定不了,但浪来了要么我说的踏浪而行要么被浪拍在沙滩上。一、前世今生(一)演变1.最初形态小学算术(清末):熟习日用计算( 核心词“应用意识”与“运算能力”的最初形态)。50 年代,强调
2、“日用计算”仍具合理性。反思:现在呢?100 多年过去了,难道小学数学还要回归油盐柴米的计算吗?另一方面,小学数学知识都有广泛的实用价值吗?例如:量角,生活应用只需比较角的大小,无需测量。又如:三角形面积底高2,使用的人0.5%。但是,量角、三角形面积计算都是不可或缺的学习基础。因此,联系生活更主要目的是帮助建构知识意义,促进理解和培养应用意识;同时还必须为进一步学习着想!我们应当追求更现实与更高层次的整合2.建国至新课改两个核心词四个核心词算术教学大纲(1963) :计算能力,初步的逻辑推理能力与空间观念,解答应用题的能力。小学数学教学大纲(1978) :计算能力,初步的逻辑思维能力与空间观
3、念,解决简单实际问题。反思:中学数学一直只提“三大能力”,小学数学从诞生之日至本世纪初,一直重视生活应用,还要“回归生活”必然出现“异化 ”!一位大妈误加入一个博士群里。有人提问:一滴水从很高很高的地方自由落体下来,砸到人会不会砸伤或砸死?群里一下就热闹起来,各种公式,各种假设,各种阻力,重力,加速度的计算,足足讨论了近一个小时。这时大妈默默问了一句:你们没有淋过雨吗 ?群里突然死一般的寂静然后,然后大妈就被踢出群了。感悟:知识能给你带来更多思考方式,但是经验也可以让你更快地解决问题。这也是多年前就有的数学性和生活化的提法的由来。3.新课改以来四个核心词六个核心词十个核心词课标实验稿(2001
4、) :数感、符号感、空间观念、统计观念、应用意识、推理能力课标修订版(2011) :数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识“历史使人明智”,“以史为鉴,可以知兴替”。反思:100 多年来,我们一直是“加法思维”,“什么重要加什么”。你还愿意继续做“加法”吗?(二)从核心词到核心素养对核心词的反思核心词十个之多,还有核心吗?为什么要“由厚到薄”?“减负增效”的需要;深化素质教育的需要;教育内涵发展的需要。本着有主有次,突出重点的思想,十个核心词可以凸显五个,兼顾其他:教育部提出创建“核心素养体系”的任务,使数学学科核心词获得了嬗变为核心
5、素养的契机。二、什么是数学核心素养现在在讨论核心素养,核心素养就很难讨论特别清楚,但是有一句话是非常好的,就是培养一个孩子,这个孩子可能未来不从事数学,那培养的终极目标是什么呢?终极目标就是学会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界,眼光、思维、语言,你在讲课的过程当中,在备课的过程之中,这个是很重要的,我认为是终极目标。因此在这样一个终极目标下,我们好的教学质量应该是怎样的呢?就是把握数学内容的本质,创设合适的教学情境,在教师的启发下,提一个好的情境、好的问题引发学生思考,学生让他自然而然的学会思考是很难的,教师的责任之一就是要他学会思考,敢于思考,
6、善于思考,这是教师的责任,让学生在情境中掌握知识技能,感悟数学内容的本质,积累数学思维的经验,这就是课标说的四基:基础知识、基本技能、基本思想和基本活动经验。孩子是否会想问题不是老师教会的,是自己领悟出来的,是一种经验的积累,所以老师要帮这孩子积累经验,一个是思维的经验:会想问题;一个是做事的经验:会做事情,这两个经验是很重要的。最后加上一句话,形成数学的核心素养。这样的话你们就记住三件事情,第一个就是让孩子们掌握知识,这是必须的;第二个提高能力;第三个发展素养。素养是终极目标,这样我就把常态教学和核心素养结合在一起了,终极目标是最难实现的。什么是数学核心素养,原来我不知道这个词,所以在写课标
7、时写的是核心概念,我们国家在教育部文件教育部关于全面深化课程改革,落实立德树人根本任务中提到了核心素养,并且要求修改课程标准,要把学科核心素养贯穿始终, “数学素养 ”我知道,但是我不知道 “数学核心素养” 。学科核心素养的概念在这个文件中体现出来的,这个标准出来之后,北师大组成专家团队在研究核心素养,他们是这样定义的,是指学生应具备的、能够适应终身发展和社会发展需要的必备品格和关键能力,那么变成数学核心素养就是:具有数学基本特征的、适应个人终身发展和社会发展需要的人的、具有数学特征的关键能力与思维品质。必备品质是比较难理解的,在此我提出的核心素养供你们参考和理解。我理解的核心素养是后天形成的
8、,是在特定场合才能表现出来的,是跟人的行为有关的知识能力和态度。涉及三方面:人与社会、人与自己、人与工具,这是我脑袋中想的,只供参考。不是后天的,怎么还会在学校里?学习时刻东西表现是本能,这不用你教,是特定场合表现出来的,是和人的行为有关的,是思维习惯,是智商,说到底是一种习惯,有点像修养式的一个习惯,是在特定场合表现人的行为有关的。我估计在这个课标公布后都会讨论,我是根据经合组织、科教文组织、欧盟组织等相关资料,进行总结合并出这几句话,你要是查原文的话,我建议去查经合组织和欧盟,那是我归拢总结出来的。现在根据这个想法,我们高中阶段的核心素养定了六个方面,最本质的是数学抽象、逻辑推理、数学建模
9、,剩余的虽不是本质,但是高中阶段表现的是直观想象、数学运算、数据分析,在写义教课标的时候给了八个核心词,正好和义务教育的数学核心素养刚好相应:数感和符号意识正好对上数学抽象;数学抽象在小学阶段主要表现在符号意识和数感,推理能力及逻辑推理,模型思想及数学建模,直观想象在义务教育中体现的就是几何直观和空间想象,几何直观比较好建立,代数直观非常难建立,还有统计直观更难建立。所以义教阶段只提了几何直观,我在会上提出过任何学科应该把这个学科的直观作为培养终极目标,但是义教阶段是不能都建立起来的,把整个数学直观都建立是很难的一件事情,所以只强调几何直观,在高中时候就多了一点,在大学时候要都建立起来。数学的
10、直观是看出来了的,不是证出来的。小学老师教直观就是教孩子把结论看出来,是培养这个直观。这三个是很重要的:应用意识、创新意识和学会学习。原来十个关键词的时候有应用意识和创新意识,在义教阶段我不知道怎么样,反正在高中阶段学会学习是很重要的。那么为什么定这几个核心词呢?它的理由同我终极培养目标是有关的。刚才说会用数学的眼光观察现实世界,数学的眼光就是学过数学的人看世界同没学过数学的人看世界有什么差异呢?学过数学的人看世界会抽象,会一般地看问题,因此就是抽象,包括直观想象。其实抽象是看出来的,感情色彩很多是靠直观想象的,那么引发的数学特征是什么?就是数学具有一般性,我们数学研究的东西不是个案的,是一般
11、的。一定记住你反复做题时你培养技巧是不行的,技巧是个案的,你要培养技能,但是很多老师培养的是技巧,对这道题好使,数学培养的是对很多题都好使。小学数学老师经常会碰到这样的问题:3x+2=5 ,直接就看出 x=1,直接就得出结论 x=1,我说不行,你必须用解方程的方法一步步算,通信通法往往比你解一道题的方法更重要。第二个,数学的思维是什么?学过数学的人想问题和没学过数学的人想问题的本质是什么,一般人都认为学过数学的人想问题有逻辑,这就是数学的逻辑,引发的数学特征就是数学的严谨性。数学的语言是什么?数学有直接应用,数学真正应用到化学和物理这些学科是靠模型,义教阶段比较少,因为模型的原因,它引发数学的
12、特征是数学的广泛性。三、如何在小学数学教学活动中体现数学核心素养1.教无定法我先讲个前言就是小学数学教学和数学核心素养怎么能挂上钩,我的第一个观点你们一定不同意,但是我坚持我的想法。教无定法,绝对不能说哪种教学方法是最好的办法,教育教学是个艺术,艺术就是在不同的场合、不同的情况下会采取不同的方式,所以根据你讲课内容的不同,根据听众的不同,甚至根据你那天讲的心情的不同,你可以用不同的教学方法,比如一个新概念的引入,你可能会举一些例子来说明这个概念是怎么回事;如果要是接续以前的概念,你可能就不要引入很现实的例子,直接就讲下去了,我认为都可以,教无定法,但是教书得有一个基本的规则,所以我希望经过新常
13、态的讨论能定下一个原则,就是说课堂教学应该遵循的原则是什么,或者说评价一堂课好或不好的标准是什么,教书是一门艺术,艺术同科学的最大区别是什么?科学是无论是谁,无论在哪里,无论在什么时候得到的结论都是一样的,这就叫做科学。艺术是会随着人的不同、时间的不同、场合的不同有所改变,因此艺术的好坏有一个标准,基本标准就叫做价值观,由你的价值观来判断这个艺术是好或是不好,有人认为好,有人认为非常不好。价值观是什么,就是一堂课的评判标准是什么,在此,中国的义务教育法中,国家鼓励学校和教师采用启发式教育教学方法,提高教育教学质量,就是不管你怎样教书,采用怎样的办法,一定要启发学生思考,启发式教学,在法律中只有
14、这句话,因此在修改普通高中数学课程标准明确指出,数学教学活动的关键是启发学生学会数学思考,启发学生思考是非常重要的。2.立足学本课堂达成四基,开展“问题引领式学习学本式成长课堂是达成的很好平台,四基中的积累数学基本经验就是我们所说的教师少讲学生多学多亲身经历,刚才说了挺多不再赘述。谈谈问题引领式学习。3.例谈几个核心素养的教学现在我进入我要谈的主要内容,在小学数学中如何教核心素养,主要谈三件事情。第一如何教数学的抽象,我认为义教阶段的符号意识、数感甚至把几何直观和空间想象都归到数学抽象;第二讲逻辑推理,小学核心词中提到的运算能力和推理能力;第三讲数学模型的模型思想、数据分析观念。先谈数学抽象。
15、什么是数学抽象?数学抽象是指舍去事物的一切物理属性,得到数学研究的对象,数学研究对象来自两点,一个是数量与数量关系,一个是图形与图形关系。你们记住这件事情,光记住概念是不够的,也没有什么意义的,得到概念的同时,要不得到概念的性质,要不得到概念的之间的关系,这是很重要的,舍去一切物理属性,说起来容易,做起来并不是很容易。我们在讲课的过程中经常会忘记这句话,课标上有一个例子:天安门城门是一个轴对称图形,有的学生就提出不对,旗帜没有对称。对称是指什么呢,数学要抽象,主要是教材有缺陷,其实应该把所有的物理属性都剔除,就剩下轮廓同颜色也没有关系,天安门城楼的轮廓是轴对称图形,所以数学应该是去除一切物理属
16、性的。抽象的对象,我现在就干一件事情就是把每件事情说得特别仔细,绝不含糊,我也不跟你云山雾罩,可能说得不全,容易让人挑毛病,所以一般人都愿意说得云山雾罩,让你挑不出毛病,但是对于小学老师则不行,我必须把话说透,所以我写了书基本概念与运算法则 30 问题 ,谈得非常仔细。今天我也采取这块原则,抽象的对象,一个是数量,一个是图形。抽象之后得到了数学研究的对象,得到了概念、关系和规律。现在我提出一个问题,就是在小学教学的过程当中,抽象大概要经过哪几个必要的步骤?我不是很清楚,这是你们的事,我就往下具体谈了,义教阶段先谈数、再谈运算和几何。不仅小学数学,整个数学,抽象本质上两种方法,第一个方法是对应的
17、方法,第二个方法是内涵的方法。对应的方法的方法就是起个名字,但是这个起名字是极为重要的,我建议小学一、二年级用对应的方法,有的概念一开始引入得用对应的方法,然后用内涵的方法,现在我提第一个问题:数是什么?数的本质是什么?表示数的关键是什么?这个问题比较泛,我不知道,曾问过东北师范大学研究教育的一位老先生,他回答不上,我就比较着急,因为最根本的问题答不上,我就开始研究了。数是什么?关于理解它涉及到两个素养,一个涉及符号意思,另一个涉及到数感。数是符号,是对数量的抽象,光有概念不很重要,关系很重要,既然是从数量中抽象出来的,那么数的关系来自于数量的关系。你们仔细想想数量关系的本质是什么,数量关系的
18、本质是多少。我讲一个例子:来了一只狼,一只狗敢对付;来一群狼,狗是不是掉头就跑。动物知道多还是少,所以动物知道就是本质的,最根本的。数量的本质是多和少,抽象到数就是大和小,数的大和小是数的本质。你光教数字“2”是没有意义的,你要教 2 比 3 小,比 1 大,怎么教呢?你们教科书上都是这样教的:三个苹果,三只鸡对应三个小方块,然后用一个拐弯的符号表示 3,就是这样抽象出来的,所以 3 就是个符号,对不对?记住,这个叫做模式,三只鸡、三个苹果对应三个小方块这是重要的,这是一个开始的模式,因为有一个研究数学教育的老师曾经问我为什么有的孩子老也分不清楚 3 和 4,我就问他是不是讲 3 的时候讲3
19、个苹果,讲 4 的时候讲 4 个梨呢,他说是。这就不行了,孩子小,他不知道你讲的 3 跟苹果无关,你讲的 4 跟梨无关,他不知道这件事情。因此我同师大附小的老师说,基于孩子比较小,在一学期中你用小方块就老用小方块,别一堂课用小方块,下堂课用圆,再下堂课用小长条,把孩子的脑袋搞乱了,要怎么简洁怎么来,慢慢地就懂得了。关于负数,我都呼吁好几次了,负数按我这么讲,你们一般是加完等于 0 的那个就是负数。我给你们讲个故事,以后用这个故事讲负数。在小学课本中是不是这样讲的:负数最早出现于中国的九章算术 。我干什么都比较较真,就把九章算术翻来了,方程篇第八题,它讲这样一个事:一个人卖马卖牛挣的钱,之后又买
20、羊交了钱,就出现了这么一个情况。文字形式有收入有支出,收入算正的,支出算负的,负数就是这么出来的。负数和正数是什么关系:数量相等、意义相反,因此负数也是对数量的抽象,如果你把挣的钱算正,交的钱就算负,往东算正,往西就算负,往上就算正,往下的就意义相反,数量相等这个事的意义很重要,因此绝对值是表示它的数量,这还谈了中国传统文化挺好。还有一个对数的认识是内涵的方法,内涵的方法是数,是一个个多起来的这个叫后继数,这个是皮亚诺的算术工艺体系,数是一个个多起来的,一个个多起来按+1 表示,所以加法同时定义出来的,这是数学的公理,这是皮亚诺公理,是自然数公理。那么现在就有一个问题了,我有一次听课说是讲 1
21、0000,那么 10 个 1000 是 10000,我说十千为什么是一万呢,后来我问我们附小,我们附小也是这样讲,课本上也是这样讲的,10 个1000 是 10000,是乘法,那个时候教乘法了吗?10000 是怎么回事?在千以内最大的是 9999,如果又来一个数,我们怎么叫新的数呢?中国老祖宗出面起个名字叫万,西方的老祖宗不是特别聪明就叫它 10 千,一万是起个名字,数是一个个多起来的,这就是内涵的方法理解,所以一开始用对应的方法,然后用内涵的方法来教这个事情。不管你怎么教符号,表达是一致的,所以符号表达很重要。读数怎么读,我也是听一堂课。一开始我看孩子们上课前眼睛发光,听完这堂课眼睛就迷离了
22、,我说终于把孩子们讲糊涂了。读数有 0 不好读,是不是?后面有一个 0 怎么办?后面有两个 0 怎么办?中间有一个 0 怎么办?中间有 2个 0 怎么办?一堂课下来孩子们都弄糊涂了。下课我就问老师你读数就这么读啊。老师回答说我不这么读,我说你不这么读你为什么让孩子们这么读,我说读数的关键是什么,他说不知道,我说你们这么教书不行。我认为读数的关键就两条,一个是符号,0-9;第二个是数位,个位的 2 和十位的 2 是不一样的。那么怎么读呢?就用它的符号读它的数位就完了,2002(2000 零百零 10,2 个)就是这样读,你不嫌麻烦就这么读,你要嫌麻烦就读 2002,这堂课就讲完了,还用讲一堂课吗
23、?五分钟肯定讲完了。还有一件事情就是数位和数没有分出来“十”个个是“十 ”, “十” 个十是 “百”, “十” 个百是“千”, “十”个千是“万”,是指数位,为什么是“十 ”呢?因为是十进制,数不是,数是一个个多起来的,所以万是计数单位。运算也有两个方法,我这边讲两个最基础的,再往下你们自己想去。加法怎么讲?加法的本质怎么讲?加法是最重要的,你们都这样讲的有 3 个小方块再加上 1 个小方块,4 个小方块,所以 3+1+4,对不对?我说为什么等于 4,他也说不出来,我说是不是 4=3+1,所以 3+1=4。是的,但是这里有两个事情没有说出来,什么叫加?什么叫等?他问我怎么讲,我说你这么讲,我们
24、附小老师现在按我说的讲:这头有 3 个小方块,这头有 4 个小方块,问小孩哪头多,小孩说那头多,这头再加上一个小方块,问哪头多,说一样多,所以 3+1=4。什么叫加得清楚?什么叫等要清楚?什么叫等?等有两个概念,一个是运算的结果,还有一个表示量相等。等号有这么一个功能,就是等号在讲两个故事,两个故事量相等,这就是建立方程。什么是方程呢?就是方程必须讲两个故事,讲一个故事怎么来列出方程呢,讲两个故事,两个故事量相等,所以就这样讲。我后来对小学老师佩服得五体投地,我讲课讲得干巴巴的,而我们附小老师这样讲:猴哥哥同猴妹妹去摘桃,猴哥哥摘了 4 个,猴妹妹摘了 3 个,谁摘的多,猴哥哥摘的多,那么我在
25、猴妹妹这加上一个,一样多,所以 3+1=4。你看人家讲的比我好多了,就是所有的符号,你跟孩子讲可能讲的不是很清楚,但是你给孩子创设一个情境,让孩子去悟。所以这块就涉及到这样一个事了,方程。什么是方程?含有未知数的等式是方程,这句话对吗?我就问编书的,2x-x=x 是方程吗?那是运算,怎么叫方程呢?等号有两个功能,一个是运算,一个是量相等。那么什么是方程?方程应该是讲两个故事,两个故事量相乘,因此应该是含有未知数的表示量相等的等式是方程,不把本质体现出来,纠结表面也没用,含有 2 的等式是方程,你怎么不说含有加法的等式是方程呢,所以小学老师不好当就在这里。这些概念是最基本的概念,这些概念是没法用其他的词无法形容的概念,这些概念你得让孩子们悟出来,这就难了,所以我说教大学好教,教研究生好教,这个概念他都不懂,你都可以批评他了,你批评小孩子怎么批评呢? 作者:史宁中(东北师范大学数学系教授,博士生导师)