收藏 分享(赏)

导数复习讲义.doc

上传人:ysd1539 文档编号:7053240 上传时间:2019-05-04 格式:DOC 页数:13 大小:519KB
下载 相关 举报
导数复习讲义.doc_第1页
第1页 / 共13页
导数复习讲义.doc_第2页
第2页 / 共13页
导数复习讲义.doc_第3页
第3页 / 共13页
导数复习讲义.doc_第4页
第4页 / 共13页
导数复习讲义.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、高考学习网中国最大高考学习网站 G | 我们负责传递知识!高中数学复习讲义 第十二章 导数及其应用【知识图解】 【方法点拨】导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。1重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。2深刻理解导数概念。概念是根本,是所有性质的基础,有些

2、问题可以直接用定义解决。在理解定义时,要注意“函数 ()fx在点 0处的导数 0()fx”与“函数 ()fx在开区间(,)ab内的导数 ()fx”之间的区别与联系。3强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。4重视“数形结合”的渗透,强调“几何直观” 。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。5加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。

3、6 (理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速平均速度 瞬时速度平均变化率 瞬时变化率割线斜率 切线斜率导 数基本初等函数导数公式、导数运算法则微积分基本定理导数和函数单调性的关系导数与极(最)值的关系定积分(理科)高考学习网中国最大高考学习网站 G | 我们负责传递知识!直线运动的路程和变力作的功等,逐步体验微积分基本定理。第 1 课 导数的概念及运算【考点导读】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.掌握函数在一点处的导数的定义和导数的几何

4、意义;理解导函数的概念;3.熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法则;5.了解复合函数的求导法则.会求某些简单函数的导数.(理科)【基础练习】1设函数 f( x)在 x=x0处可导,则 0limhxfxf)(0与 x0,h 的关系是 仅与 x0有关而与 h 无关 。2已知 )1()(23ff, 则 )2(f 0 。3已知 ,cos1inxy,则当 y时, x32。4已知 af)(,则 )(f2lna。5已知两曲线 xy3和 cbxy都经过点 P(1,2) ,且在点 P 处有公切线,试求 a,b,c 值。解:因为点 P(1,2)在曲线 a3上, 1函数 axy3和 cbxy2的

5、导数分别为 axy23和 bxy,且在点 P 处有公切数 12,得 b=2又由 c,得 1【范例导析】例 1下列函数的导数: 2()3)yx 321xy ()(cosin)xfex分析:利用导数的四则运算求导数。解:法一: 223x253x 2610y法二: )1)(1()2 xy = 3x+ )(34x2610x 2323高考学习网中国最大高考学习网站 G | 我们负责传递知识! 252321 xxy ()fe x(cos x+sinx) +e x(sin x+cosx) 2e xcosx,点评:利用基本函数的导数、导数的运算法则及复合函数的求导法则进行导数运算,是高考对导数考查的基本要求。

6、例 2 如果曲线 103xy的某一切线与直线 34xy平行,求切点坐标与切线方程分析:本题重在理解导数的几何意义:曲线 ()f在给定点 0(,)Pfx处的切线的斜率0()kfx,用导数的几何意义求曲线的斜率就很简单了。解: 切线与直线 34xy平行, 斜率为 4又切线在点 0的斜率为 0 032(1)31xx 132x 1 80y 或 20y切点为(1,-8)或(-1,-12)切线方程为 )1(4x或 )1(4x即 2xy或 84xy点评:函数导数的几何意义揭示了导数知识与平面解析几何知识的密切联系,利用导数能解决许多曲线的切线问题,其中寻找切点是很关键的地方。变题:求曲线 32yx的过点 (

7、1,)A的切线方程。答案: 0,540y点评:本题中“过点 ()的切线 ”与“在点 (,1)的切线 ”的含义是不同的,后者是以A为切点,只有一条切线,而前者不一定以 A为切点,切线也不一定只有一条,所以要先设切点,然后求出切点坐标,再解决问题。【反馈演练】1一物体做直线运动的方程为 21st, s的单位是 ,mt的单位是 s,该物体在 3 秒末的瞬时速度是 5/m。2设生产 x个单位产品的总成本函数是2()8xC,则生产 8 个单位产品时,边际成本是 2 。3已知函数 f( x)在 x=1 处的导数为 3,则 f( x)的解析式可能为 (1) 。高考学习网中国最大高考学习网站 G | 我们负责

8、传递知识!(1) f( x)=( x1) 2+3( x1) (2) f( x)=2( x1)(3) f( x)=2( x1) 2 (4) f( x)= x14若曲线 4y的一条切线 l与直线 480y垂直,则 l的方程为 30y。5在函数 83的图象上,其切线的倾斜角小于 的点中,坐标为整数的点的个数是 3 。6过点(0,4)与曲线 y x3 x2 相切的直线方程是 y4 x4 7 求下列函数的导数:(1)y=(2x2-1)(3x+1) (2) xysin2 (3) )1ln(2x (4) 1xey (5) ico (6) ycosi解:() 3482, (2) xxsn22 ; (3) 21

9、xy, (4) 2)1(xey;(5) 2)sin(1coscox , (6) cosin.8 已知直线 1l为曲线 y在点 (0,2)处的切线, 2l为该曲线的另一条切线,且21l()求直线 2l的方程;()求由直线 1, 和 x轴所围成的三角形的面积 解: 设直线 l的斜率为 1k,直线 2l的斜率为 2k,2yx,由题意得 0|xy,得直线 1l的方程为 2yx121lk,xx令 得, 21,2yxy将 代 入 得2l与该曲线的切点坐标为 (,)A由直线方程的点斜式得直线 l的方程为: 3yx ()由直线 1l的方程为 2yx,令 0=yx得 :高考学习网中国最大高考学习网站 G | 我

10、们负责传递知识!由直线 2l的方程为 3yx,令 0=3yx得 :由 3yx得: 52 设由直线 1l, 2和 x轴所围成的三角形的面积为 S,则: 1525(3)24s 第 2 课 导数的应用 A【考点导读】1 通过数形结合的方法直观了解函数的单调性与导数的关系,能熟练利用导数研究函数的单调性;会求某些简单函数的单调区间。2 结合函数的图象,了解函数的极大(小)值、最大(小)值与导数的关系;会求简单多项式函数的极大(小)值,以及在指定区间上的最大(小)值。【基础练习】1若函数 ()fxmn是 R上的单调函数,则 ,mn应满足的条件是 0,mnR 。 2函数 5123xy在0,3上的最大值、最

11、小值分别是 5,15 。3用导数确定函数 ()si(0,)f的单调减区间是 3,2。4函数 ()sin,2fx的最大值是 ,最小值是 0。5函数 xe的单调递增区间是 (-,-2)与(0,+ ) 。【范例导析】例 1 32()f在区间 1,上的最大值是 2 。解:当1x0 时, ()fx0,当 0x1 时, ()fx0,所以当 x0 时, f(x)取得最大值为 2。点评:用导数求极值或最值时要掌握一般方法,导数为 0 的点是否是极值点还取决与该点两侧的单调性,导数为 0 的点未必都是极值点,如:函数 3()fx。例 2 求下列函数单调区间:(1) 521)(3xxfy (2) xy12高考学习

12、网中国最大高考学习网站 G | 我们负责传递知识!(3) xky2)0( (4) xyln2解:(1) 2 )1(23x )3,(x),1(时 0y)1,3(x0y ,, , (2) 2 ),(, ),0((3) 21xky ),(k),( 0y, ),0(,(kx 0 ),(k, ),( )0,(k, ),(k(4) xy142定义域为 , 21,x 0y ),21(x 0点评:熟练掌握单调性的求法,函数的单调性是解决函数的极值、最值问题的基础。例3设函数f(x)= 322(1),1.xaa其 中 ()求f(x)的单调区间;()讨论f(x)的极值。解:由已知得 ()6()f,令 ()0fx,

13、解得 120,1xa。()当 1a时, 2x, 在 ,上单调递增;当 时, ()1fa, ()fx随 的变化情况如下表:x,00 ,1)a1a(,)()f+ 0 0xA极大值 A极小值 A从上表可知,函数 ()fx在 ,)上单调递增;在 (0,1)a上单调递减;在 (1,)a上单调递增。()由()知,当 1a时,函数 ()fx没有极值;高考学习网中国最大高考学习网站 G | 我们负责传递知识!当 1a时,函数 ()fx在 0处取得极大值,在 1xa处取得极小值 31()a。点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。【反馈演练】1关于函数

14、 762)(23xxf,下列说法不正确的是 (4) 。(1)在区间( ,0)内, )(f为增函数 (2)在区间(0,2)内, )(xf为减函数(3)在区间(2, )内, x为增函数 (4 )在区间( ,0) ,2内,)(xf为增函数2对任意 x,有 34)(xf, (1)f,则此函数为 )(4xf 。 3函数 y=2x3-3x2-12x+5 在0,3上的最大值与最小值分别是 5 , -15 。4下列函数中, 0是极值点的函数是 (2) 。(1) 3yx (2) 2cosyx (3) tanyx (4) 1yx5下列说法正确的是 (4) 。 (1)函数的极大值就是函数的最大值 (2)函数的极小值

15、就是函数的最小值(3)函数的最值一定是极值 (4)在闭区间上的连续函数一定存在最值6函数 32()5fx的单调减区间是 0,2 。7求满足条件的 a的范围: (1)使 axysin为 R上增函数;(2)使 xy3为 R上的增函数; (3)使 5)(23f 为 上的增函数。解:(1) acos 由题意可知: 0y对 x都成立 1a又当 a时 xyin也符合条件 ),1a(2)同上 ),0 ( 3)同上 ),3 8已知函数 cbxaxf44l(x0)在 x = 1 处取得极值 c3,其中 ,abc为常数。(1)试确定 ,b的值;(2)讨论函数 f(x)的单调区间。解:(I)由题意知 (1)3fc,

16、因此 3bc,从而 3b高考学习网中国最大高考学习网站 G | 我们负责传递知识!又对 ()fx求导得 3431ln4 bxaxxf (4ln)axb由题意 10,因此 0b,解得 2(II)由(I)知 3()8lfxx( ) ,令 ()0fx,解得 1x当 x时, ,此时 ()f为减函数;当 时, ()0f,此时 ()fx为增函数因此 ()f的单调递减区间为 (01), ,而 ()fx的单调递增区间为 (1), 第 3 课 导数的应用 B【考点导读】1 深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识。2 利用导数解决实际生活中的一些问题,进一步加深对导数本质的理解,逐

17、步提高分析问题、探索问题以及解决实际应用问题等各种综合能力。【基础练习】1若 )(xf是在 l,内的可导的偶函数,且 )(xf不恒为零,则关于 )(xf下列说法正确的是(4) 。(1)必定是 l,内的偶函数 (2)必定是 l,内的奇函数(3)必定是 内的非奇非偶函数 (4)可能是奇函数,也可能是偶函数2 ()fx是 f的导函数, ()fx的图象如右图所示,则 ()fx的图象只可能是(4) 。(1) (2) (3) (4)3若 tR,曲线 yx与直线 yxt在 0,1上的不同交点的个数有 至多 1 个 高考学习网中国最大高考学习网站 G | 我们负责传递知识!。 4把长为 60cm的铁丝围成矩形

18、,要使矩形的面积最大,则长为 15cm ,宽为 15c。【范例导析】例 1函数 cbxaxf23)(,过曲线 )(xfy上的点 )(,fP的切线方程为 3xy(1)若 y在 时有极值,求 f (x)的表达式;(2)在(1)的条件下,求 )(fy在 1,3上最大值;(3)若函数 )(xf在区间 ,2上单调递增,求 b 的取值范围解:(1) 13:)1(,)( )(2():,( 23 xyfPxfy bacbayff fca的 切 线 方 程 为上而 过 即 的 切 线 方 程 为上 点过 求 导 数 得由)(0223cba即故 542)( 5,4,231)(4)(,)(xxf cbaff相 联

19、立 解 得由 故时 有 极 值在 (2) )2(33 xxx ),2 )2,(31,32()(f+ 0 0 +极大 极小15)(4)()(223ff极 大 5141)(3,3在xf上最大值为 13 (3) ,)在 区 间xfy上单调递增又 0)(2 baba知由 bxf2)(依题意 1,0,( 2在即上 恒 有在 bff 上恒成立.在 63116xfbx小时在 )()(,2f小时 在 .012, bbxf 则时 小综合上述讨论可知,所求参数 b 取值范围是:b0。 点评:本题把导数的几何意义与单调性、极值和最值结合起来,属于函数的综合应用题。例 2请您设计一个帐篷。它下部的形状是高为 1m 的

20、正六棱柱,上部的形状是侧棱长为 3m的正六棱锥(如右图所示) 。试问当帐篷的顶点 O 到底面中心 1的距离为多少时,帐篷的体高考学习网中国最大高考学习网站 G | 我们负责传递知识!积最大?分析:本题应该先建立模型,再求体积的最大值。选择适当的变量很关键,设 1O的长度会比较简便。 解:设 1()Oxm,则由题设可得正六棱锥底面边长为22238x(单位:m) 。于是底面正六边形的面积为(单位:m 2):22 233(1)6()(8)4x xA。帐篷的体积为(单位:m 3):2 31()(8)()(162)2Vxxx求导数,得 23()();令 0Vx解得 x=-2(不合题意,舍去),x=2。当

21、 1x2 时, (),V(x)为增函数;当 2x4 时, ()0Vx,V(x)为减函数。所以当 x=2 时,V(x)最大。答:当 OO1为 2m 时,帐篷的体积最大。点评:本题是结合空间几何体的体积求最值,加深理解导数的工具作用,主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。【反馈演练】1设 ()fx是函数 ()fx的导函数,将 ()yfx和 ()fx的图象画在同一个直角坐标系中,不可能正确的是 图 4 。2已知二次函数 2()fxabc的导数为 ()fx, 0f,对于任意实数 x都有yxOyxOyxOyxO图1图2图3图4高考学习网中国最大高考学习网

22、站 G | 我们负责传递知识!()0fx,则 (1)f的最小值为 32 。3若 2,则下列命题正确的是 (3) .(1) sinx(2) sinx(3) sinx(4) 3sinx4函数 ()l(0)f的单调递增区间是 1,e5已知函数 32fxbcxd的图象过点 P(0,2) ,且在点 M(1, f(1) )处的切线方程为 076y()求函数 y=f(x)的解析式; ()求函数 y=f(x)的单调区间解:()由 f(x)的图象经过 P(0,2) ,知 d=2,所以 ,)(23cxbxf .23)(cbxxf由在 M(-1,f(-1)处的切线方程是 76y, 知.1,)(,0716f即3262

23、.0,ccbb即解 得故所求的解析式是 .23)(3xxf() 22()36.60,fx令210.令解得 .1,1 当 ;)(,f时或当 .x时故 )2,()在xf内是增函数,在 )2,内是减函数,在 ),21(内是增函数点评:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力6如图,有一块半椭圆形钢板,其半轴长为 r,短半轴长为 r,计划将此钢板切割成等腰梯形的形状,下底 AB是半椭圆的短轴,上底 CD的端点在椭圆上,记 2CDx,梯形面积为 S(I)求面积 S以 为自变量的函数式,并写出其定义域;(II)求面积 的最大值解:(I)依题意,以 的中点 O为原点建

24、立直角坐标系 Oxy(如图) ,则点 C的横坐标为 x点 C的纵坐标 y满足方程21(0)4xr,4rCAB2CDABOxy高考学习网中国最大高考学习网站 G | 我们负责传递知识!解得 2(0)yrxr所以 21)SA2(xrx,其定义域为 0xr(II)记 2()4)()fr, , 则 2()8)(fxrx令 0x,得 1因为当 02rx时, 0;当 时, ()0f,所以 ()f在 ,2r上是单调递增函数,在 (,)上是单调递减函数,所以 1f是 ()fx的最大值因此,当 2r时, S也取得最大值,最大值为 213fr即梯形面积 的最大值为 23r7设函数 2()1(0)fxtxttR,

25、()求 的最小值 )h;()若 ()2htm对 (02t, 恒成立,求实数 m的取值范围解:() 3)1(0)fxtxtR, ,当 t时, (取最小值 3f,即 3(1htt()令 )2)ghtmt,由 2(30t得 1, (不合题意,舍去) 当 变化时 )t, (的变化情况如下表: t(0), 1(2),()g0高考学习网中国最大高考学习网站 G | 我们负责传递知识!()gt递增 极大值 1m递减()gt在 02, 内有最大值 1hm在 (), 内恒成立等价于 ()0gt在 (2), 内恒成立,即等价于 1,所以 的取值范围为 1点评:本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力8设函数 2()ln)fxax,若当 时, ()fx取得极值,求 a的值,并讨论()f的单调性.解:12xxa,依题意有 (1)0f,故 32a从而 3()322xf f的定义域为 令 ,当 312x时, ()0fx;当 1x时, ()0fx;当 12时,()0f从而, fx分别在区间 312令 单调增加,在区间 12令单调减少

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报