1、3.2 初等矩阵,矩阵的初等变换是矩阵的一种最基本的运算 这有着广泛的应用,上页,下页,铃,结束,返回,首页,补充例题,由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵,初等矩阵,E(i(k)表示用非零数k乘单位矩阵E的第i行(列)得到初等矩阵,E(ij(k)表示把单位矩阵E的第j行的k倍加到第i行上 或把单位矩阵E的第i列的k倍加到第j列上得到初等矩阵,E(i j)表示对调单位矩阵E的第i j两行(列)得到的初等矩阵,例如,下页,由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵,初等矩阵,E(i(k)表示用非零数k乘单位矩阵E的第i行(列)得到初等矩阵,E(ij(k)表示把单位矩阵E的第
2、j行的k倍加到第i行上 或把单位矩阵E的第i列的k倍加到第j列上得到初等矩阵,E(i j)表示对调单位矩阵E的第i j两行(列)得到的初等矩阵,初等矩阵的可逆性,E(i j)1E(i j),E(ij(k)1E(ij(k),下页,定理1(初等矩阵在矩阵乘法中的作用 ) 设A是一个mn矩阵 对A施行一次初等行变换 相当于在A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵,例如 设 则有,下页,例如 设 则有,定理1(初等矩阵在矩阵乘法中的作用 ) 设A是一个mn矩阵 对A施行一次初等行变换 相当于在A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变
3、换 相当于在A的右边乘以相应的n 阶初等矩阵,下页,定理2(矩阵可逆的充要条件) 方阵A可逆的充分必要条件是存在有限个初等矩阵P1 P2 Pl 使AP1P2 Pl ,推论2mn矩阵A与B等价的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q 使PAQB,定理1(初等矩阵在矩阵乘法中的作用 ) 设A是一个mn矩阵 对A施行一次初等行变换 相当于在A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵,推论1,下页,设A为n阶可逆矩阵 B为ns矩阵 显然A1也可逆 所以存在初等矩阵P1 P2 Pl 使A1P1P2 Pl 于是有A1AP1P2 Pl A 即
4、E P1P2 Pl A 及 A1BP1P2 Pl B 这表明 如果对A进行若干次初等行变换化为E 则对B进行同样的初等行变换将化为A1B 两式合起来为P1P2 Pl (A B)(E A1B),矩阵A可逆AP1P2 Pl 其中P1 P2 Pl都是初等矩阵,求逆矩阵的初等行变换法,下页,设A为n阶可逆矩阵 B为ns矩阵 则存在初等矩阵P1 P2 Pl 使P1P2 Pl (A B)(E A1B),上式的意义 (i)取BE时 上式成为 P1P2 Pl (A E)(E A1)(ii)当A为可逆矩阵时 方程AXB的解为XA1B 求AXB的解可以对(A B)进行初等行变换 使之成为(E A1B) 此时即得X
5、A1B,矩阵A可逆AP1P2 Pl 其中P1 P2 Pl都是初等矩阵,求逆矩阵的初等行变换法,下页,若矩阵A可逆 则矩阵(A E)经初等行变换可化为(E A1),例1 设 求A1,解,(A E),因为,下页,若矩阵A可逆 则矩阵(A E)经初等行变换可化为(E A1),例1 设 求A1,r,(A E),所以,解,因为,下页,若矩阵A可逆 则矩阵(A B)经初等行变换可化为(E A1B),记X(x1 x2) B(b1 b2) 则两个线性方程组可合成一个矩阵方程AXB,解,因为,下页,若矩阵A可逆 则矩阵(A B)经初等行变换可化为(E A1B),例3 求解矩阵方程AXAX 其中 ,把所给方程变形为(AE)XA,解,因为,所以,讨论 如何求解矩阵方程XAB? 其中A可逆,结束,提示,