1、 11 绪论随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体铁素体型不锈钢,即双相不锈钢。传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。所谓双相不锈钢是在其固溶组织中
2、铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥
3、氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80 年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。上世纪 30 年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50 等),但是双相不锈钢真正产业化还是在上世纪 60 年代以后,其发展经历了 3 代历程。1.1 我国双相不锈钢的应用双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于双相不锈钢除具有很强的各类抗腐蚀性
4、能之外,还具有很好的强度和韧性,为此,在一般民用2 工程和能源交通方面也逐步得到越来越多的应用,如桥梁、飞机、船舶、汽车以及沿海城市和化工区的装饰建筑等。1.1.1 石油和天然气工业 这是国外应用双相不锈钢的主要领域之一,目前铺设的油气输送管线已有1000km。国内只有南海油田少量使用,全部进口。另外,西气东输工程西起塔里木盆地的集气管线考虑要用双相不锈钢焊管,国内已有条件生产和制造。炼油工业是最早使用国产双相不锈钢的部门,在南京,镇海,天津,济南等炼化公司多集中用在常减压蒸馏塔的塔顶衬里(或复合板)、塔内构件、空冷器和水冷器等,最长的已使用20年。镇海炼化公司是我国最大的炼油基地,加工能力为
5、1600万t,进入世界百强,冷凝冷却系统中多套设备使用双相不锈钢。这一领域涉及的范围很宽,工况情况复杂,介质多种多样,也是使用双相不锈钢较早和较多的领域。甲醇是重要的能源化工原料,2002年国内产量210万t,进口量与此相当,国产缺口很大,当然也有少量(数千吨)出口韩国,目前20万t的大型和多套10万t以下的中小型的甲醇合成反应器的触媒管都是采用双相不锈钢,大中型装置采用2205钢管,使用进口管较多,小型装置多采用185Mo型国产钢管。齐鲁石化公司氯乙烯装置的氧氯化反应器中的冷却蛇管的介质条件(HCI,水蒸气)苛刻,目前已使用进口的2205双相不锈钢,使用结果有待观察。 上海石化公司乙烯装置的
6、催化剂再生冷却器采用国产类似DP3钢的00C25Ni7Mo3WCuN双相不锈钢做海水冷却器管,海水出口温度40,至今已间歇使用15年,效果很好。 河南煤化工厂的粉煤气化装置的数台冷却器都是采用进口2205钢管制造。1.1.2 化肥工业 尿素工业也是最早使用国产双相不锈钢的部门,装置中含氯离子水的换热设备使用得较多,例如尿素装置中CO2压缩机三段冷却器原使用304L奥氏体不锈钢管束,l个月后即因应力腐蚀破裂而泄漏,双相不锈钢可用5年以上,随后一、二段冷却器也都换用了185Mo或2205双相不锈钢。由于双相不锈钢在尿素介质中有良好的抗腐蚀疲劳性能,很适合制造尿素生产的关键设备甲按泵泵体。国产的00
7、Cr25Ni6Mo2N钢可以通过Huey法的晶间腐蚀倾向检验,己用于黑龙江化肥厂、洞庭氮肥厂(五柱塞式)等大型化肥厂。国内中小化肥厂3 的甲按泵泵体基本上采用185Mo钢制造,也有数十家采用的是高铬含铅双相不锈钢。此外这种钢的泵阀锻件通过了日本JIS G0573、G0591硝酸法和硫酸法的检验,批量出口日本,价格要比日本当地生产的便宜。此外,采用国产OCr25Ni6Mo3CuN时效强化双相不锈钢,利用其耐磨损腐蚀性能,用于尿素装置主工艺管路多种规格的高压截止阀的内件等,效果不错。1.1.3 运输业 最近几年海上化学品运输船行业是国外最大的双相不锈钢用户,消费量约占热轧板的50。化学品船装载的液
8、体货物多种多样,包括化学和石化产品,食品等,要求船舱材料既能耐腐蚀,又有高的强度。如今2205双相不锈钢已代替316L和317L奥氏体不锈钢,成为海上化学品船的标准用材。国内在这方面刚刚起步,中国长江航运集团青山船厂采用欧洲建造标准,使用进口的2205钢板,自行制造成功第一艘18500t化学品船,钢板消耗量约1200t,己出口比利时。实现了我国用双相不锈钢建造化学品船零的突破,该厂已形成规模生产能力。1.1.4 造纸和制盐轻工业由于双相不锈钢在中性氯化物溶液中有较好的耐孔蚀和缝隙腐蚀的能力,利用这一特点,国内开发了该钢在真空制盐和盐硝联产装置上的应用,20万-30万t制盐厂的大型盐水和芒硝蒸发
9、罐采用了双相不锈钢的衬里和复合板,解决了设备结盐垢和腐蚀问题,最长的已有10年的使用历史。双相不锈钢用于大型真空制盐装置,国内已有成熟的经验。在制纸浆和造纸业领域,国内几乎是空白,硫酸盐蒸煮法仍多采用低碳钢制造的蒸煮锅,而国外早已普及使用双相不锈钢的蒸煮、漂白等设备,目前国内也有引进,但数量极少。综上所述,可以看出国内双相不锈钢的使用是有一定局限性的,像国外大量使用双相不锈钢的诸如纸浆和造纸工业、油气工业、运输业、甚至建筑业几个大的领域我们涉及得不多,有的还只是刚刚开始。根据国情,利用双相不锈钢的性能优势,今后除继续扩大在化工和石化等领域的应用外,结合纸浆和造纸工业的技术改造需要开发在这一领域
10、中的应用,至于油气管线目前很难推广,双相不锈钢的价格是太高了但是制造有关油气田需要的耐氯离子和硫化氢的装置像集气管线和换热设备等还是可以采用双相不锈钢,甚至超级双相不锈钢的。海上运输业的发展,化学品船制造业方兴未艾,需要大量大张的钢板,这一缺口有待填平补齐。至于在建筑业方面的应用,至今4 还完全未涉及,其实滨海的城市雕塑景观和开发 2304 钢用于民用热水器方面完全可代替 304 和 316 奥氏体不锈钢。1.2 双相不锈钢的优势及应用1.2.1 与奥氏体不锈钢相比,双相不锈钢的优势如下:1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁
11、厚要比常用的奥氏体减少 30-50%,有利于降低成本。表1-2 部分双相不锈钢的牌号及化学成分(质量分数)钢号 国别 C Cr Ni Mo Mn Si 其他3RE60 瑞典 0.03 18.5 4.9 2.7 2.0 第1代Uranus50 芬兰 0.04 21.5 6.5 1.5 Cu:1.0-2.0SAF2205 瑞典 0.03 22.0 5.5 3.0 2.0 0.8 DP-3 日本 0.03 25.0 6.5 3.5 W:0.4 - Cu:0.20-0.8008X21H6M2T 俄罗斯 0.08 21.0 7.5 2.0 Ti:0.2-0.4第2代0Cr21Ni5Ti 中国 0.06
12、22.0 5.8 - 0.8 0.8 Ti:5SAF2507 瑞典 0.03 25.5 7.0 4.5 Cu:0.50DP-3W 日本 0.03 25.0 7.6 3.0 W:0.4 Cu:0.80第3代0Cr26Ni5Mo3 中国 0.08 26.5 5.0 3.0 1.5 1.0 2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。3)在许多介质中应用最普遍的 2205 双相不锈钢的耐腐蚀性优于普通的 316L 奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,
13、再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。5 4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。1.2.2 与铁素体不锈钢相比,双相不锈钢的优势如下 1)综合力学性尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素
14、体不锈钢。3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。4)焊接性能也远优于铁素体不锈钢,一般焊前不需预热,焊后不需热处理。5)应用范围较铁素体不锈钢宽。6 2 SAF2205 双相钢接头的基本要求及达到要求的措施2.1 基本要求焊接接头不存在超过质量标准规定的缺陷,同时力学性能满足焊接结构预期的使用性能要求。不出现焊接热裂纹和冷裂纹,应力腐蚀,点蚀,相脆化现象的出现 2.2 防止措施1)双相不锈钢具有良好的焊接性,一般选用与母材成分相同或相近的焊接材料,由于含碳量对抗腐蚀性有很大的影响,因此熔敷金属含碳量不用高于母材。腐蚀性弱或仅为避免锈蚀污染的设备,可选用含Ti或Nb等稳定化元素或超低
15、碳焊接材料。对于耐酸腐蚀性能较高的工件,常选用含Mo的焊接材料。选用适合的焊接材料不会发生焊接热裂纹和冷裂纹,如选用焊条型号E309MoL-16焊条牌号 A042氩弧焊焊丝H00Cr18Ni14Mo2。2)合理设计焊接接头。避免腐蚀介质在焊接接头部位聚集,降低或消除应力集中,消除或降低焊接接头残余应力,用常用工艺措施,加热温度在800-900之间才可得到比较理想的消除应力效果;结构设计时要尽量采用对接接头,避免十字交叉焊缝,单V形坡口改用Y形坡口。3)采用小的热输入,即小电流,大的焊接速度,减少横向摆动,待前一道焊缝冷却到预热温度后,再焊下一道焊缝,焊后进行750-800 退火处理,退火后应快
16、冷,防止出现相和475脆化。7 3 SAF2205 双相钢的焊接性及焊接中可能存在的问题3.1SAF2205 双相钢的焊接性3.1.1SAF2205 双相钢的性能特点1)含钼双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能。一般 18-8 型奥氏体不锈钢在 600以上中性氯化物溶液中容易发生应力腐蚀断裂,在微量氯化物及硫化氢工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀断裂的倾向,而双相不锈钢却有良好的抵抗能力。 2)含钼双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀抗力当量值(PREN=Cr%+3.3Mo%+16N%)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相仿。双
17、相不锈钢与奥氏体不锈钢耐孔蚀性能与 AISI 316L 相当。含 25%Cr 的,尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了 AISI 316L。 3)具有良好的耐腐蚀疲劳和磨损腐蚀性能。在某些腐蚀介质的条件下,适用于制作泵、阀等动力设备。 4)综合力学性能好。有较高的强度和疲劳强度,屈服强度是 18-8 型奥氏体不锈钢的 2 倍。固溶态的延伸率达到 25%,韧性值 AK(V 型槽口)在 100J 以上。5)可焊性良好,热裂倾向小,一般焊前不需预热,焊后不需热处理,可与 18-8型奥氏体不锈钢或碳钢等异种焊接。 6)含低铬(18%Cr)的双相不锈钢热加工温度范围比 18-8 型奥氏
18、体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板。含高铬(25%Cr)的双相不锈钢热加工比奥氏体不锈钢略显困难,可以生产板、管和丝等产品。 7)冷加工时比 18-8 型奥氏体不锈钢加工硬化效应大,在管、板承受变形初期,需施加较大应力才能变形。8)与奥氏体不锈钢相比,导热系数大,线膨胀系数小,适合用作设备的衬里和生产复合板。也适合制作热交换器的管芯,换热效率比奥氏体不锈钢高。 9)仍有高铬铁素体不锈钢的各种脆性倾向,不宜用在高于 3000C 的工作条件。双相不锈钢中含铬量愈低, 等脆性相的危害性也愈小。8 3.1.2 SAF2205 双相钢的组织特点目前双相不锈钢由于冶炼质量要求高,价格较
19、贵,故产量不高,约占世界不锈钢产量的1,但上世纪90年代以后增加较快, 1990 年产量约10万t,1999年已达11万t,2000年约为20万t。我国在上世纪60年代开始研究双相不锈钢,主要有低铬(Cr18)、中铬(Cr22)和高铬(Cr25)3种,主要产品是管、板和复合板,产量都不大,约2000t,2001年双相不锈钢的消费量约4000t,有1/2随工程进口。双相不锈钢的组织, 根据W(Ni)eq,W(Cr)eq和Schaeffer图,一般奥氏体(A)和铁素体(F)的比例约为60: 40,但实际上由于化学成分和固溶处理的温度偏差,可能出现;A或F70,对性能会有一定影响,因此,最好控制在各
20、为50。表3-2 不表同组织类别不锈钢的力学性能力学性能组织类型 钢种 热处理状态 s/MPa b/Mpa 5()硬度奥氏体 0Cr18Ni9 920-1150。 C固溶、快冷 205-300 520-580 40 200SAF2205 550-580 750-780 30 220DP-3W 560-590 760-780 20 270奥氏体+铁 素体0Cr26Ni5Mo2950-1100。 C固溶、水冷或快冷400-450 620-650 20 250铁素体 00Cr18Mo2 800-1050。 C退火、快冷 250-270 420-450 30 200双相不锈钢具有很强的抗局部孔蚀、点蚀
21、和缝隙孔穴式腐蚀的能力,主要是由化学成分中的Mo,N等元素起的作用。经多年研究,建立了一个抗孔蚀当量指数PREN(PREN= Cr+3.3 Mo+16 N)来评价,其值越高,抗局部孔蚀的能力越强。双相钢的一个显著特点就是其双相组织。除此之外, 还常伴有其他相组织的产生, 这些次生相也或多或少的影响钢材的性能。对双相钢来说,特殊的合金元素组成是保证构成双相及各相比例的基础, 通过主要元素的含量, 可以预测金相组的相比例。目前, 国际上使用较多的是美国焊接研究会WRC提出的WRC一92组织图 (见图3-1)9 表3-3 部分奥氏体钢及双相不锈钢的成分及PREN值化学成分(质量分数) %)组织 钢种
22、C Cr Ni Mo NPREN308L 0.03 20 10 20奥氏体316L 0.03 18 12 2 252205 0.03 22 5 3 0.15 34255 0.03 25 6 3 0.20 38双相不锈钢2507 0.03 25 7 4 0.25 42A一奥氏体;AF一奥氏体一铁素体;FA一铁素体一奥氏体;F一铁素体;Creq= Cr+Mo+0.7NbNieq=Ni+35C+20N+0.25Cu从图3-1可看出, 铬、铂、妮是主要的铁素体相形成元素, 而镍、碳、氮、铜是主要的奥氏体相形成元素。改变这些元素的含量, 即可改变固溶组织中的相比例。除了不同元素的组成及比例影响相比例外,
23、热处理也将在一定程度上影响相的比例。双相钢在高温下(1300以上), 呈现单一的高温铁素体组织, 即相。但冷却过程中粗大的相阿会转变成常温铁素体相(相)和奥氏体相(相)。由于相与相的生成条件、速度不同, 因而不同的冷却起点温度及冷却方式速度会使相与相有不同的最终比例, 而且其组织特征也不同。其实, 热处理对相比例的影响是有限的, 但对二次相(对钢材性能的影响比较大)的生成才是至关重要的。常用的双相钢常会在冷却过程中出现二次相。主要的二次相有二次奥氏体、碳化10 物、相 、相、R相等。1)二次奥氏体( 2)。双相钢冷却时会在铁素体相中析出 2。 2相具有一定的奥氏体相特征,会促进相的生产。2)碳
24、化物(M 23C6)的存在不利于钢材的耐蚀性。快速冷却可避免M 23C6的生成。 3) 相硬而脆, 可显著降低钢材的塑性和韧性。相富含铬, 使其周围因铬而耐腐蚀性降低。鉴于此, 相是一种危害最大的二次相。以急冷方式快速通过该温度区间, 可有效避免相的产生。4) 相、R相、都是在一定的温度区间(550-750) 析出的金属间相, 富铬和钼, 硬而脆, 易降低钢材的耐腐蚀性。但与相相比, 析出的量较少, 因此其危害低于相。3.1.3 耐腐蚀性能开发双相钢就是解决奥氏体不锈钢腐蚀开裂性能的问题, 并同时获得高强度。(1)均匀腐蚀。一般来讲, 双相组织并不利于钢材耐电化学腐蚀, 因为可能出现电偶腐蚀。
25、在某些强氧化性酸和强还原性酸中, 其耐腐蚀性有时不如奥氏体, 但有时比奥氏体还好。在有机酸中, 它和奥氏体不锈钢一样都具有良好的耐腐蚀性。在碱液中, 其耐腐蚀性相对较差些。(2)孔蚀是一种局部腐蚀, 也是不锈钢最有害的腐蚀型式之一, 它往往成为应力腐蚀开裂和疲劳腐蚀开裂的根源。目前比较流行的是通过孔蚀指数(PREN)来评价钢材的耐孔蚀性能。即将耐孔蚀的几个主要元素折合成铬含量的当量, 通过铬含量的当量(PREN)来判断钢材的耐孔蚀性能:PREN=Cr+3.3xMo+16xN因此, 对于钢材的抗孔蚀性能, 除了考虑其值外, 还要在生产过程中力求避免相的生成, 减少金属夹杂物。(3)晶间腐蚀。双相
26、钢几乎不发生晶间腐蚀敏化, 即使是在焊后空冷条件下。(4)应力腐蚀。双相组织的存在, 使得双相钢抗应力腐蚀开裂的性能要优于奥氏体不锈钢及铁素体钢。总的说来, 双相钢的抗均匀腐蚀性能、抗孔蚀性能、抗缝隙腐蚀性能与奥氏体不锈钢相比并没有优越太多, 但其抗晶间腐蚀性能、抗应力腐蚀性能则明显优于奥氏体不锈钢。11 3.1.4 力学性能1)强度。在双相钢中, 由于铁素体相约占二分之一, 故其强度明显高于奥氏体不锈钢。双相钢的强度比奥氏体不锈钢高约三分之一。2)塑性和韧性。在双相钢中, 由于奥氏体相约占二分之一, 故其塑性和韧性优于铁素体不锈钢。另外由于奥氏体相的存在, 使得容易产生脆性化合物的碳、氮等在
27、铁素体相中溶解度降低, 从而降低了脆性相的发生。同时, 因两相同时存在,可阻止或缓解高温下晶粒的长大, 也可阻止或缓解裂纹的扩展, 从而提高了钢材的塑性和韧性。但与奥氏体不锈钢相比, 由于铁素体相的存在, 使得其塑性和韧性相对较低, 尤其是铁素体相中易产生相、相、R相、相等脆性相, 如果处理不当, 会严重影响钢材的塑性和韧性。3.1.5 加工性能工程上应用较多的加工方法有冶炼、铸造、热变形加工、冷变形加工、机加工、热处理、焊接等。1)冶炼。双相钢的冶炼比奥氏体或铁素体钢的难度大, 控制要求高。目前, 双相钢最低要求应采用或进行精炼的。2)铸造。基于与冶炼同样的道理, 铸造难度也大于一般奥氏体和
28、铁素体钢材, 而且难度比冶炼更大。除此之外, 由于两相组织的原因, 在浇铸时还要采取有效的措施, 以避免比奥氏体钢更容易出现的铸造裂纹两相凝固差别的原因、气孔加氮的原因等问题。3)热变形加工。双相钢具有的两相组织使其热变形加工的难度要远大于奥氏体不锈钢。冷变形加工。双相钢的冷变形加工的难度要远大于奥氏体不锈钢。4)机加工。就常用的工程材料而言, 都不存在较大的加工难度, 双相钢也不例外。热处理。热处理对双相钢性能还有一些特殊影响。不同的热处理参数, 可得到不同的相比例, 直接影响钢材性能通过热处理, 可以改变加工过程中的元素分配比例, 改善甚至消除加工过程中次生相带来的不利影响, 从而影响到钢
29、材的最终机械性能和耐腐蚀性能等热处理过程也会使钢材产生新的次生相, 也会导致元素在各相中的重新分配。因此, 不恰当的热处理会使钢材的性能恶化最早限制双相钢应用的主要原因就是焊接问题, 而工程上又往往不可避免焊接过程。双相钢焊接的难点就在于其焊接接头是否仍能获得与母材相同或相近的两相组织, 12 这也是保证焊接接头是否具有与母材同样性能(包括力学性能和耐腐蚀性能)等的关键所在。这里所说的焊接接头包括焊缝熔合区、高温热影响区(HTHAZ)和低温热影响区(LTHAZ)。1)焊缝熔合区。该区域的两相组织相对容易控制 即通过选择合适的焊接材料就能做到.2)高温热影响区。它是指具有约1250熔点这一温度特
30、征的区域。这一区域很窄, 却是其相组织最难控制的一个区域。因为母材的成分不能因其而有过多的奥氏体形成元素, 而该区域的温度特征又使其高温铁素体在冷却过程中部分得不到向奥氏体转化。应采用较大的焊接线量,使焊缝冷却速度降低, 使高温铁素体有一定的时间向奥氏体转化, 从而使相组织均衡。3)低温热影响区。由于该区域的温度较低,不足以引起基本相的变化, 但可能会发生二次相的产生。因此, 采用合适的焊接线量并控制层间温度是防止低温热影响区性能变坏的主要手段。值得一提的是, 双相钢一般不进行焊后热处理双相不锈钢的焊接性兼有奥氏体钢和铁素体钢各自的优点,并减少了其各自的不足之处。1) 热裂纹的敏感性比奥氏体钢
31、小得多。2) 冷裂纹的敏感性比一般低合金高强钢也小得多。3) 双相不锈钢焊接时主要问题不在焊缝,而在热影响区,因为在焊接热循环作用下,热影响区处于快冷非平衡态, 冷却后总是保留更多的铁素体,从而增大了腐蚀倾向和氢致裂纹(脆化)的敏感性。4) 双相不锈钢焊接接头有析出%相脆化的可能,相是Cr和Fe的金属间化合物,它的形成温度范围600-1000 .C,不同钢种形成相的温度不同, 如00Cr18Ni5Mo3Si2 钢在800-900 .C,而双相不锈钢00Cr25Ni7Mo3CuN的在800-900 .C,8500 .C时最敏感。形成%相需经一定的时间,一般1-2 min萌生1-2 min相增多并
32、长大,因此,焊接时应采用小热输入,快速冷却,消应力处理时应采用较低的温度,如550-600 .C为宜。5) 双相不锈钢含有50%的铁素体, 同样也存在475 .C脆性,但不如铁素体不锈钢那样敏感,双相钢中的铁素体在300-525 .C之间长期保温会析出高铬 , 相,而在475 .C最敏感,使双相钢发生脆化,由于 , 相析出时间较长,故对一般焊接影响不大,但应限制双相不锈钢的工作温度不高于250 .C。双相不锈钢的焊接件,由于工艺不当,一旦产生相或析出 , 相引起475 .C脆性,则可采用固溶处理使之消除。13 双相不锈钢的扩散氢含量不及奥氏体不锈钢,因此焊材中或周围环境中氢的质量浓度较高时,则
33、会在焊接双相不锈钢时出现氢致裂纹和脆化。3.2 焊接中可能存在的问题1)SAF2205双相钢的相脆化在Fe-Cr二元合金中,相中含Cr约为25%,形成温度为520-820,有很多合金元素可置换相中的Fe和Cr原子,从而使相生成于稳定的温度区间和几率增大。相析出主要在相中进行,如果相含有较多的Mo时,即可提高稳定存在温度区,又能加速相的析出过程。高铬双相不锈钢容易产生相脆化现象。表3-1 双相不锈钢固溶处理及相和475 .C脆性的温度范围内容 2205双相钢及2507等 超级双相钢00Cr25Ni7Mo3CuN等固溶处理温度/ 。 C 1040 1025-1100在空气中加热起皮温度/ 。 C
34、1000 1000相形成温度/ 。 C 600-1000 600-1000475.C脆化温度/ 。 C 300-525 300-5252)焊接接头的氢脆和氢致裂纹双相不锈钢凝固结晶为单相铁素体,但是一般的拘束条件下,焊缝金属的热裂纹很小。当/适当时,冷裂纹敏感性也较低,但双相不锈钢中毕竟含有较高的相,当拘束度较大及焊缝金属含氢量较高时,还存在氢致裂纹的危险。通过对模拟焊接热影响区的试棒研究了双相不锈钢的氢脆与显微组织之间的关系,并采用断裂应变评定了氢脆敏感性,结果表明氢脆主要发生于相,而且氢脆的敏感性随峰值温度的升高而增加。3)焊接接头的应力腐蚀开裂从双相不锈钢应力与断裂时间的延迟破坏之间的关
35、系可知,母材的临界应力达到破坏应力的90%,氢脆应力腐蚀开裂的敏感性很低,焊缝金属的临界应力为破坏应力的70%,相当于 0.2的95%,由于焊缝周围的残余应力可以超过 0.2,因此焊接接头容易产生腐蚀开裂。4)焊接接头的点蚀14 由于冷却速度对点蚀点位的影响较为显著,因此,同样的含N量在冷却速度不同的条件下点蚀电位相差很大。由此可见,含N量较低的双相不锈钢的点蚀电位对冷却速度很敏感,在焊接含N量较低的双相不锈钢时对冷却速度的控制要求更严。15 4 2205 双相钢的焊接工艺为了取得良好的焊接质量, 焊接人员应掌握双相钢的焊接特点和注意事项,另外从腐蚀的角度来看, 焊接接头总是不锈钢结构的最薄弱
36、环节,实际上管道最终的耐蚀水平是由焊工决定的,为了尽可能的取得良好的结果,焊接操作过程应当遵守一些基本规则。总结出的 SAF2205 DSS 一些关键技术如下。1)焊前准备 采用机加工制备试板坡口,用不锈钢专用砂轮片打磨坡口及坡口两侧各 30mm 范围,并用丙酮清洗,以除去氧化膜、油污。2) 焊接方法 一般的焊接方法 , 如焊条电弧焊、钨极氩弧焊和熔化极气体保护焊埋弧焊等, 都可用于双相不锈钢的焊接。焊条电弧焊时最常用的焊接工艺方法,其特点灵活方便,并可实现全位置焊接,因此焊条电弧焊时焊接修复的常用工艺方法。钨极氩弧焊的特点时焊接质量优良,自动化的焊接效率也较高,因此广泛用于管道的封底焊缝及薄
37、壁管道的焊接。钨极氩弧焊的保护气体通常采用纯 Ar,当进行管道封底焊时,应采用 Ar+2%N2 或 Ar+5%N2保护气体,同时还应采用纯 Ar 或高纯 N 进行焊缝背面保护,以防止根部焊道的铁素体化。熔化极气体保护焊的特点时较高的熔敷效率,即可采用较灵活的半自动焊,也可实现自动焊。 3) 焊材的选择 对于焊条电弧焊,根据耐腐蚀性,接头韧性的要求即焊接位置,可选用酸性或碱性焊条。采用酸性焊条时,脱渣优良,焊缝光滑,接头成形美观,但是焊缝金属的冲击韧性较低,于此同时,为了防止焊接气孔及焊接氢致裂纹需严格控制焊条中的含氢量。当要求焊缝金属具有较高的冲击韧度,并需进行全位置焊接时,应采用碱性焊条。另
38、外,在根部封底焊时,通常采用碱性焊条,当对焊缝金属的耐腐蚀性能有特殊要求时,还应采用超级双相钢成分的碱性焊条。对于实芯气体保护焊焊丝,在保证焊接金属具有良好的耐腐蚀性与力学性能的同时,还应注意其焊接工艺性能。对于药芯焊丝,当要求焊缝光滑,接头成形美观时,可采用金红石型或钛-钙型药芯焊丝。当要求较高的冲击韧度或在较大的拘束条件下焊接时,宜采用碱度较高的药芯焊丝。对于埋弧焊焊丝,宜采用直径较小的焊丝,实现中小焊接规范下的多层多道焊,以防止焊接热影响区的脆化,与此同时,应采用配套的碱性焊剂,以防止焊接氢致裂纹。焊接材料要选用比母材含镍量高的双相钢焊材, 确保焊缝中奥氏体相占优势,焊缝铁素体含量控制在
39、 30%45%为宜。4) 焊接工艺参数的选择 焊接线能量太大或太小都不好, 一般控制在 0.52.5 kJ/cm 范围,其具体大小要根据焊件厚度选择。一般焊接时不需要预热, 但焊件壁厚过16 大或环境温度过低时, 为防止冷速过快造成焊缝和热影响区铁素体含量过高, 必要时要采取预热措施。为避免冷却速度过低而引起析出相的产生, 多层/多道焊的层间温度要控制。5) 焊接熔池及背面的保护 气体保护焊时保护气体中加氮可以提高焊缝的耐蚀性。有效的背面气体保护是保证焊接质量的前提, 保护气体的纯度应满足工艺要求, 应采取有效的背面保护工装,开始焊接时要对焊缝背面的氧含量进行检测, 满足工艺要求后才能开始焊接
40、。6) 定位焊缝 定位焊缝焊接时,如果长度过短,焊接未建立起平衡过程即结束,焊缝冷却会很快,可能导致铁素体含量过高、低韧性并因氮化物析出而降低耐腐蚀性能。因此, 如采用定位焊,对定位焊缝的最短长度应进行规定, 且应采用较大热输入规范参数。7) 焊接过程材料的保护 材料表面的弧击和起弧, 是一个瞬间的高温过程, 冷却速度很快,表面显微组织中铁素体含量很高, 这种组织对裂纹和腐蚀很敏感, 应尽力避免, 如果产生必须用细砂轮打磨去除。现场焊接过程中材料的保护非常重要, 应避免碳钢、铜、低熔点金属或其它杂质对不锈钢的污染, 可能情况下, 不锈钢和碳钢管应分开存放和焊接。焊接和切割过程中应采取措施防止飞
41、溅、弧击、渗碳、局部过热等。17 5 焊接工艺评定5.1 SAF2205 双相不锈钢管焊接工艺指导书SAF2205 双相不锈钢管焊接工艺指导书单位名称 河南机电高等专科学校 焊接工艺指导书编号 GY001 日期 4 月 22 日 焊接工艺评定报告编号 PD001焊接方法 手工 TIG 焊+焊条电弧焊 机械化程度 半自动化 焊接接头: 坡口形式 Y 型坡口 衬垫(材料及规格) 其他 简图: 母 材: SAF2205 与 SAF2205 相焊 厚度范围: 母材:对接焊缝 8mm 角焊缝 管子直径、壁厚范围:对接焊缝 角焊缝 焊缝金属厚度范围: 对接焊缝 其他 焊接材料:焊材类别 焊丝焊材标准 填充
42、金属尺寸 2.0焊材型号 /焊材牌号 H00Cr18Ni14Mo2其他 耐蚀堆焊金属化学成分(%) C Si Mn P S Cr Ni Mo V Ti Nb18 其他:焊接位置对接焊缝位置: _平焊 焊接方向:(向上、向下 角焊缝位置_ 焊接方向:(向上、向下) 焊后热处理:温度范围() 保温时间(h) 预热:预热 () (允许最低值) _ _100_ 层间温度(oC)(允许最高值) _ _ 保持预热时间_2h 加热方式 _ 氧乙炔_ 保护气体:气体种类 混合比 流量(L/min)保护气 _氩气 _99.9% 1824 尾部保护气 背面保护气_ _电特性:电流种类: 直流 极性 : 反接 焊接
43、电流范围:(A) 280320 电弧电压(V): 2630 (按所焊位置和厚度,分别列出电流电压范围,记入下表)填充材料 焊接电源焊道/焊层焊接方法 牌号 直径 极性 电流 (A)电弧电压焊接速度(cm/min)线能量(kJ/cm)1 手工TIG 焊H00Cr18Ni14Mo22.0mm 反接 280 27 40 11.342 焊条电弧焊 A042 3.2mm / 300 30 45 123 焊条电弧焊 A042 3.2mm / 320 30 47 12.2钨极类型及直径: 铈钨极 喷嘴直径 (mm): 5mm 熔滴过渡形式: 射流过渡 焊丝送进速度 (cm/min): 4047 19 技术措
44、施:摆动焊或不摆动焊: 不摆动 摆动参数 : 焊前清理和层间清理: 背面清根方法 : 机械清根 单道焊或多道焊(每面): 正二反一 单丝焊或多丝焊:单丝焊 导电嘴至工件距离(mm) 35 锤击: 其他: 编制 日期4 月22 日 审核 日期 批准 日期焊接工艺评定报告单位名称: 河南机电高等专科学校 焊接工艺评定报告编号.:PD001 焊接工艺指导书编号 : GY001 焊接方法: 手工 TIG 焊+ 焊条电弧焊 机械化程度:半自动化 接头简图:焊后热处理:热处理温度(): 保温时间 (h): 母材:材料标准: 类、组别号: SAF2205 与类、组别号: SAF2205 相焊厚度: 8 mm
45、 直径: 其他: 保护气体:气体种类 混合比 流量 (L/min)保护气体氩气 99.9% 1824 尾部保护气 背面保护气 20 填充金属:焊材标准 焊材牌号: H00Cr18Ni14Mo2 焊材规格: 2.0mm 焊缝金属厚度; 其 他: 电特性:电流种类: 直流 极性: 反接 钨极尺寸: 铈钨极 5mm 焊接电流 (A): 280320 电弧电压 (V): 2630 其他: 焊接位置: 对接焊缝位置: 方向 (向上, 向下)角焊缝位置: 方向(向上, 向下)预热:预热温度(): 100 层间温度 (): 其他: 技术措施:焊接速度(cm/min): 4047 摆动或不摆动: 不摆动 摆动参数: 多道焊或单道焊(每面): 正二反一 多丝焊或单丝焊: 单丝焊 其他: 拉伸试验: 试验报告编号: LS001 试样编号试样宽度(mm)试样厚度(mm)横截面积 (mm2)断裂载菏 (kN)抗拉强度 (Mpa)断裂