收藏 分享(赏)

历史上著名的悖论.doc

上传人:11xg27ws 文档编号:6885063 上传时间:2019-04-25 格式:DOC 页数:2 大小:30.50KB
下载 相关 举报
历史上著名的悖论.doc_第1页
第1页 / 共2页
历史上著名的悖论.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、历史上著名的悖论伯特纳德 罗素提出这个悖论,为的是把他发现的关于集合的一个著名悖论用故事通俗地表述出来。某些集合看起来是它自己的元素。例如,所有不是苹果的东西的集合、它本身就不是苹果,所以它必然是此集合自身的元素。现在来考虑一个由一切不是它本身的元案的集合组成的集合。这个集合是它本身的元素吗?无论你作何回答,你都自相矛盾。历史上著名的悖论 NO.1 说谎者悖论(1iar paradox or Epimenides paradox) 最古老的语义悖论。公元前 6 世纪古希腊哲学家伊壁孟德 所创的四个悖论之一。是关于“我正在撒谎” 的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德

2、不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。NO.2 伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了尽管伊勒支持拉知道奥列斯特是她的哥哥但她并不认识站在她面前的这个男人。 写成一个推理即: 伊勒克持拉不知道站在她面前的这个人是她的哥哥。 伊勒克持拉知道奥列期特是她的哥哥。 站在她面前的人是奥列期特。所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。NO.3 M:著名的理发师悖论是伯特纳德罗素提出的。一个理发师的招牌上写着: 告示:城里所有不自己刮脸的男人都由我给他们刮脸,

3、我也只给这些人刮脸。 M:谁给这位理发师刮脸呢? M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。 M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了! NO.4 唐吉诃德悖论 M:小说唐吉诃德里描写过一个国家它有一条奇怪的法律:每一个旅游者都要回答一个问题。 问,你来这里做什么? M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。 M:一天,有个旅游者回答 旅游者:我来这里是要被绞死。 M:这时,卫兵也和鳄鱼一样慌了

4、神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。 NO.5在中国古代墨经中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。” 意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。NO.6一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名?NO.7有“ 西方孔子”之称的雅典人苏格拉底(,公元前前)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立“定义” 以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代

5、表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。 苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。” 这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。概率悖论出自法国数学家莫里斯克莱特契克,在他的数学消遣书中写道:“有两个人都声称他的领带好一些。他们叫来了第三个人,让他作出裁决到底谁的好。胜者必须拿出他的领带给败者作为安慰。两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?”很容易表明,如果我们做出一个明确

6、的假定来准确地限定条件,它就是一个公正的比赛。当然,如果我们已经得知比赛中的一个人系较便宜的领带,那么我们就知道这个比赛是不公平的。如果无法得到这类消息,我们就可以假定每一个的领带价值从 0 到任意数量(比如说一百元)的随便多少钱。如果我们按此假定构成一个两人领带价值的矩阵(这是克莱特契克在他的书中列出的),我们就可看出这个此赛是“对称的” ,不会偏向任何一个比赛者。一个比赛(或赌博)怎么会对双方都同时有利呢?有关时间的悖论,最著名的是“芝诺悖论” 。芝诺的运动论辨全部得自亚里士多德在物理学中的转述,有四个:1、二分法。物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以

7、,如果它起动了,它永远到不了终点,或者,它根本起动不了。2、阿喀琉斯(一译阿基里斯)。若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。芝诺当然知道阿基里斯能够捉住海龟,跑步者肯定也能跑到终点。它们错在哪儿?类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿喀琉斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿喀琉斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。使用无穷数列求和这解法,其解答思路与悖论的表述相似,就是把一段一段跑的距离加起来。这些数列虽然有无限多项,但其总和并不是一个无穷大的数目。但是问题是,即便综合是一个有限的数,但是它却是由无限多的数(无限多的步)组成的,作为一个活生生的人,阿基里斯如何来实践着无限多个的步骤呢?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报