1、实数重点 实数的有关概念及性质,实数的运算内容提要一、 重要概念1数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2非负数:正实数与零的统称。 (表为:x0)常见的非负数有:性质:若干个非负数的和为 0,则每个非负担数均为 0。3倒数: 定义及表示法性质:A.a1/a(a1);B.1/a 中,(a 为一切实数 )a0;C.0a1 时 1/a1;a1 时,1/a1;D.积为 1。4相反数: 定义及表示法性质:A.a0 时,a-a;B.a 与-a 在数轴上的位置;C.和为 0,商为-1。5数轴:定义(“三要素” )作用:A.直观地比较实数的大小;B.明确体现绝对值意义;
2、C.建立点与实数的一一对应关系。6奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7绝对值:定义(两种):代数定义:几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。a0,符号“”是“非负数”的标志;数 a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。二、 实数的运算1 运算法则(加、减、乘、除、乘方、开方)2 运算定律(五个加法乘法交换律、结合律;乘法对加法的分配律)3 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右” (如 5 5);C.(有括号时)由“小”到“中”51到“大” 。三、 应用举例(略)附:典型例题1 已知:a、b、x 在数轴上的位置如下图,求证:x-a+x-b=b-a.2.已知:a-b=-2 且 ab0, (a0,b0) ,判断 a、b 的符号。