1、图 例 7 一、循环变动及其测定目的 二、循环变动的测定方法 (一)直接法 (二)剩余法 循环变动分析 循环变动分析-意义 循环变动分析形式 直接法 剩余法 操作步骤 用移动平均法,得到TC 的估计,由 Y/TC,得到仅含季节变动的序列,计算季节指数 对原序列建立趋势方程,得趋势项 T 的估计值 原始序列 Y/TS 得 CI 的数据 对 CI 进行移动平均得到 C 的估计 注:剔除趋势求季节指数,如果没有特别要求就先采用移动平均法求其趋势,然后求季指 回总目录 回本章目录 平稳时间序列概述 平稳时间序列定义 常见时间序列模型 严平稳 回总目录 回本章目录 平稳时间序列 所谓平稳时间序列,指如果
2、序列 二阶矩有限 , 且满足如下条件: 对任意整数 为常数; 对任意整数 自协方差函数 仅与时间间隔 有关,和起止时刻 无关。即 则称序列 为宽平稳(或协方差平稳,二阶矩平稳)序列 当 时,自协方差函数就是方差 回总目录 回本章目录 平稳序列 图形上来看就是:(1)序列围绕常数的长期均值波动,称为是均值回复(Meaning Reversion) (2)在每一时刻,方差对均值的偏离基本相同,波动程度大致相等。 回总目录 回本章目录 最简单的宽平稳序列是白噪声,常记为 , 它是构成其他序列的基石,一般白噪声的定义如下:对任意 对任意 对不同的时刻 自回归模型(AR:Auto-regressive)
3、 ; 滑动平均模型(MA:Moving-Average) ; 自回归滑动平均模型(ARMA:Auto-regressive Moving-Average) 。 回总目录 回本章目录 常见时间序列模型 P 阶自回归模型 AR(P)模型 回总目录 回本章目录 其中 称为自回归系数, 为白噪声序列 上式称为是 p 阶自回归模型,简记为 AR(p) 当 满足一定条件时,序列是平稳的 零均值时间序列 满足如下形式 q 阶滑动平均模型 MA(q)模型 回总目录 回本章目录 其中 称为滑动平均系数, 为白噪声序列 上式称为是 q 阶滑动平均模型,简记为 MA(q) 当阶数 q 有限时,序列是平稳的 零均值时
4、间序列 满足如下形式 自回归滑动平均模型(ARMA)模型 回总目录 回本章目录 其中 称为自回归系数, 称为滑动平均系数, 为白噪声序列 上式称为是 p 阶自回归模型q阶滑动平均模型,简记为 AMMA(p,q). 当 p=0, AMMA(p,q)MA(q) 一般 ARMA 模型的数学形式为 当 满足一定条件时,序列是平稳的.从以上定义中可以看出,AR 模型和 MA 模型即为 ARMA 模型的特例 当 q=0, AMMA(p,q)MA(p) 回总目录 回本章目录 ARMA 模型的识别 相关函数定阶法 信息准则定阶法 严平稳 回总目录 回本章目录 相关函数定阶法 采用 ARMA 模型对现有的数据进
5、行建模,首要的问题是确定模型的阶数,即相应的 p,q 的值,对于ARMA 模型的识别主要是通过序列的自相关函数以及偏自相关函数进行的。 序列的自相关函数度量了 与 之间的线性相关程度,用 表示,定义如下 其中 表示序列的方差 * * 第十一章 时间序列分析 时间序列 把某种现象发展变化的指标数值按一定时间顺序排列起来形成的数列,称为时间序列(数列) ,有时也称为动态数列。 任何一个时间序列都具有两个基本要素:一是现象所属的时间、二是与时间所对应的指标值 时间序列的构成要素 长期趋势(long Trend)T 季节变动(Seasonal Fluctuation)S 循环变动(Cyclical V
6、ariation)C 不规则变动(Irregular Random Variation)I 时间序列的数学模型 乘法模型各因素的影响相互不独立: * Y=TSCI 加法模型 各因素的影响相互独立 Y=T+S+C+I 图形描述及模型 作图是显示统计数据基本变动规律最简单、最直观的方法,根据图我们可以识别:平稳时间序列(水平趋势)*不要求 非平稳时间序列(上升趋势、下降趋势) 仅包含长期趋势的时间序列Y=TI 既包含长期趋势、又包括季节变动的时间序列 Y=TSI 平稳时间序列化学反应产出量 非平稳时间序列冰箱月度需求 仅包含长期趋势和不规则变动 既包含长期趋势,又包含季节变动 一、移动平均法 二、
7、趋势线法 长期趋势分析 移动平均法 移动平均法例题 图 移动平均法特点 移动平均对原数列有修匀作用,平均的时距数越大,对数列修匀作用越强。 如果移动奇数项,则只需移动一次,且损失资料 N-1 项;如果移动偶数项,则需移动两次,损失资料为 N 项。 当数列包含季节变动时,移动平均时距项数 N 应与季节变动长度一致。 适宜对数据进行修匀,但不适宜进行预测。 趋势线法 例 5 注意:对时间标号 t 的设定,可以设为 1,2,3也可以设为对称情形,如果序列有奇数项可设为,-3,-2,-1,0,1,2,3, 如果序列有偶数项可设为,-5,-3,-1,1,3,5, 例 6 某企业各年份销售额EXCEL(C
8、H12-例 6 课件) 考虑如下问题 数据中是否含趋势 测定长期趋势线性方程的系数时刻序列 t 为定义-7,-6,0,17 预测1998 年的销售额 一、季节变动及其测定目的 二、季节变动分析的原理与方法 三、季节变动的调整 季节变动分析 一、季节变动及其测定目的 季节变动是指客观现象因受自然因素或社会因素影响,而形成的有规律的周期性变动。季节变动在现实生活中经常会遇到,如商业活动中的“销售旺季”和“销售淡季” 、农产品和以农产品为原料的某些工业生产的产量和销售量、旅游业的“旅游旺季”和“旅游淡季” ,等等。 一、季节变动及其测定目的 所谓季节变动不仅仅是指随一年中四季而变动,而是泛指有规律的
9、、按一定周期(年、季、月、周、日)重复出现的变化。季节变动的原因通常与自然条件有关,同时也可能是由于生产条件、节假日、风俗习惯等社会经济因素所致。季节变动常会给人们的社会经济生活带来某种影响,如会影响某些商品的生产、销售与库存。 一、季节变动及其测定目的 我们测定季节变动的意义主要在于认识规律、分析过去、预测未来。其目的一是通过分析与测定过去的季节变动规律,为当前的决策提供依据;二是为了对未来现象季节变动作出预测,以便提前作出合理的安排:三是为了当需要不包含季节变动因素的数据时,能够消除季节变动对数列的影响,以便更好地分析其他因素。 二、季节变动分析的原理与方法 测定季节变动的方法很多,从是否
10、考虑长期趋势的影响看可分为两种:一是不考虑长期趋势的影响,根据原始时间序列直接去测定季节变动;二是根据剔除长期趋势后的数据测定季节变动。 原始资料平均法 趋势剔除法 原始资料平均法 例题 注意 例 6 注意事项 运用此方法的基本假定是原时间序列没有明显的长期趋势和循环变动,通过各年同期数据的平均,可以消除不规则变动,而且当平均的期间与循环周期基本一致时,也在一定程度上消除了循环波动。当时间序列存在明显的长期趋势时,会使季节变动的分析不准确,如存在明显的上升趋势时,年末季节变动指数会远高于年初季节变动指数;当存在明显的下降趋势时,年末的季节指数会远低于年初的季节指数。所以只有当数列的长期趋势和循环变动不明显时,运用原始资料平均法才比较比轮合适。 趋势剔除法 如果数列包含有明显的上升(下降)趋势或循环变动,为了更准确地计算季节指数,就应当首先设法从数列中消除趋势因素,然后再用平均的方法消除不规则变动,从而较准确地分解出季节变动成分。数列的长期趋势可用移动平均法或趋势方程拟合法测定。 操作步骤 书上例题 EXCEL操作 操作步骤乘法模型 例 7 三、季节变动的调整 例题