收藏 分享(赏)

基于数字图像处理技术的螺纹检测系统设计.doc

上传人:wspkg9802 文档编号:6679021 上传时间:2019-04-20 格式:DOC 页数:25 大小:600.50KB
下载 相关 举报
基于数字图像处理技术的螺纹检测系统设计.doc_第1页
第1页 / 共25页
基于数字图像处理技术的螺纹检测系统设计.doc_第2页
第2页 / 共25页
基于数字图像处理技术的螺纹检测系统设计.doc_第3页
第3页 / 共25页
基于数字图像处理技术的螺纹检测系统设计.doc_第4页
第4页 / 共25页
基于数字图像处理技术的螺纹检测系统设计.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、 二 一 二 年 二 月内蒙古科技大学本 科 毕 业 论 文题 目 : 基 于 数 字 图 像 处 理 技 术 的 螺 纹检 测 系 统 设 计 学 生 姓 名 : xxx学 院 : 物 理 科 学 与 技 术 学 院专 业 : 应 用 物 理 学班 级 : 2008 级指 导 教 师 : xxx 讲 师2摘 要本文主要研究基于数字图像处理技术中的图像边缘检测技术和对螺纹图像的参数计算问题,用 MATLAB 软件来进行模拟仿真。利用面阵系统 ,结合光学测量、 计算机图像处理等技术 ,研制了螺纹参数非接触测量系统 ,并以 MATLAB 为平台 ,编制了检测程序 ,实现了图像数据采集、 二维图像再

2、现、 边缘特征提取、 边界拟合等功能 ,能够有效地测量螺纹的多项参数。关键词:CCD 成像;MATLAB 软件应用;Canny 算子;二值法的应用;3AbstractThis paper mainly based on the digital image processing technology in image edge detection and image of thread parameters calculation problem, use MATLAB software to simulate. Using array system, combined with the opt

3、ical measurement, computer image processing technology, development of thread parameters non contact measuring system, and MATLAB as the platform, for testing procedures, to achieve the image data acquisition, image reconstruction, edge feature extraction, boundary fitting function, can effectively

4、measuring thread parameters of.Key words: CCD imaging; MATLAB software; Canny operator; two value method;4目 录引 言 .61 背景介绍及国内外发展前景 71.1 本课题研究的目的及意义 .71.2 传统的几何参数测量原理及方法 .71.2.1 传统的测量方法最常用的有下面三种: 71.3 国外测量螺纹的情况 .92 数字图像处理技术的螺纹检测 102.1 测量原理 .102.2 螺纹图像处理 .102.2.1 螺纹图像的预处理 .112.2.2 图像滤波 .112.3 图像边缘轮廓的提取

5、 .122.3.1 经典边缘检测算子的理论分析和比较 122.3.2 利用 Canny 算子提取 .152.3.3 图像轮廓的亚像素提取算法 .162.3.4 利用阈值法提取 183 测量 .203.1 测量系统放大倍数的标定 203.2 实验结果及精度分析 .213.3 误差分析 21结 论 .235参考文献 .24致 谢 .256引 言螺纹在工业生产中使用频率非常高 ,对其进行实时高精度的测量对提高配件质量有重要作用。传统螺纹的检测主要采用两种方法1:其一是综合检验法;另一种是单参数测量法。二者都需人工操作 ,精度相对较低 ,整个测量过程耗时耗力 ,工作效率低 ,且易导致螺纹损伤。在此情况

6、要求下,利用计算机软件参与螺纹的检测是十分必要的,基于数字图像处理的螺纹检测系统就是在这一环境下应运而生。本文主要针对外螺纹传统测量方法测量耗时多、 精度低等方面的不足 ,重点对摄像机成像的光学系统、 数据采集电路、 滤波算法、 边缘检测算法、 拟合算法以及螺纹特征参数的计算方法进行了研究。71 背景介绍及国内外发展前景1.1 本课题研究的目的及意义螺纹连接结构连接可靠,装配、拆卸方便,被广泛应用到机械设备以及其他设备中。其互换性和标准化程度要求高,需要进行认真的检测。以常用的紧固螺纹为例,但就几何参数来说,对其互换性要求可以归纳为两点:一是旋合性,就是规格相同的内、外螺纹可以相互自由旋合;二

7、是连接强度要求,就是相互旋合的内、外螺纹,牙侧面要有足够的接触面积,以保证连接强度。我国制造业中主要使用机械检测方法对螺纹进行检测。常用的有螺纹量规、工具显微镜、三针法和其他通用量仪等,这些方法都是手工进行的,测量速度慢、测量精度低,已不能满足实际生产的需要。基于数字图像处理技术的螺纹检测是伴随着计算机技术的发展而产生的一门新兴学科。它主要是利用光电成像、计算机图像处理和模式识别技术进行检测,其检测速度快、检测精度高。区别于机械检测方法的最大特点在于它能够进行在线检测,即对生产线上的零件进行同步、非接触检测,同时输出检测结果。利用数字图像处理技术可以对长度、角度参数进行检测。由于外螺纹轮廓形状

8、复杂、参数多,所以基于数字图像技术进行螺纹检测这一课题有必要进行深入研究。1.2 传统的几何参数测量原理及方法螺纹几何参数的测量方法可分为综合测量和单项测量两类。综合测量主要用于测量主要求保证可旋合的螺纹(螺纹性能的最低要求) ,他是利用螺纹极限量规进行测量的,被测螺纹合格的标志是通端量规能顺利的与被测螺纹在被检全长上旋合,螺纹量规有塞规和环规,分别用以检验内、外螺纹,仅仅检测螺纹外形轮廓的量规也被大量使用。但是对于精密螺纹,除了可旋合之外,还有其他更重要的要求,如对中径、螺距、牙型半角等参数还需要其误差应在规定公差范围内,对这些参数的检测就是螺纹的单项测量。1.2.1 传统的测量方法最常用的

9、有下面三种:1、用工具显微镜测量螺纹的各单项参数工具显微镜是一种应用非常广泛的光学仪器,测量螺纹是其主要用途之一,下面结合图 1.1 简要介绍其工作原理。在纵、横向滑板 3 和 11 上,分别安装有长度 200mm 和100mm 的玻璃毫米刻度尺,他们可分别在机座 1 上自由的移动,用读数显微镜 5 和 6 对准纵、横玻璃刻度尺即可进行读数,瞄准工件用的主显微镜 9及其镜架 8 安装在仪器后方的立柱 7 上,可连立柱是上下移动以调整焦距,用手动柄 10 可使立柱 7 向右或向左倾斜一定8角度,以适应各种螺旋面的测量要求。仪器的照明系统在后下方。光束照射被测件,并在主显微镜中形成被测件轮廓的影像

10、,主显微镜上方装有测角目镜(见图 1.2) ,转动其上的手柄 5,可使度盘盒 1 内刻有圆周分度的玻璃刻度盘旋转,其转动的角度可从角度目镜 3 中观察读取(见图 1.2 右上) ,刻度盘中央有米字虚线,用以对准被测件轮廓,并从中央目镜 2 中观察(见图1.2 左上) ,反光镜 4 是供角度目镜照明用。测量时移动移动仪器的纵向、横向滑板并配合旋转目镜中的米字虚线来瞄准被测件,图 1.3 为测量螺纹的螺距、中径和牙型半角的示意图。测量中径时,先将立柱 7 倾斜一个螺纹倾角 ,然后移动仪器的横、纵向滑板,在各个位置(位置、和)对准,配合旋转目镜,并在横向读数显微镜 6 读数进行测量。测量螺距时,先在

11、位置上对准,并在显微镜 5 上进行读数,然后移动纵向滑板,使之移动 n 个螺牙后在位置上对准,由显微镜 5 继续进行读数,两次读数之差即为 n 个螺距的实际值。当中央虚线在以上各位置对准螺牙侧后,即可从角度目镜 3 中读出各自的牙型半角值。上述方法称为影像法,即按被测件的轮廓影像进行测量,由于轮廓成像的清晰程度,和瞄准误差的影像,以及测量时主显微镜需倾斜一螺纹升角 ,使测量在法向截面内进行,而不是按定义在轴向截面上进行测量,并且由于安装误差的影响,测量误差会受到一定的限制。2、三针法测量外螺纹中径三针法主要用于测量精密的外螺纹中径,如图 1.4 所示,将三根精密量针放在螺纹的牙槽处,再用。精密

12、量仪(如杠杆千分尺、光学计、测长仪等)测出 M 值,最后测量出被测中径值 d2 。公式如下:93、螺纹车间低精度测量在实际生产中,对于精度不太高的牙型角常用样板进行测量。如图1.5(a),这种方法简单易行,但精度低,而在精度较高一点的牙型角测量中,一般用角度规进行,如图 1.5(b),车间检验最简单的方法是用样板如图1.5(c)所示,检测时以光隙法靠人来判断螺距的准确度,用样板检测是螺纹最低精度的检测,这种检测方法是不能测出误差的具体值的。用角度规可以测量牙型角误差,但因角度规差用的分度值为 2,故测量精度也不高。因此,这些方法只能对螺纹某些参数作低精度检测。通过对上述的三种螺纹单项测量原理及

13、方法的介绍,我们可以看出他们的共同的不足之处:都是利用机械检测方法手工测出某些参数,然后再通过数学公式人工计算出来,这样的测量方法操作工序多,不可避免的会带来主观的观测误差,而所有器具的精度也直接影响测量精度;另外,手工操作的方式,耗时长、效率低;最后,这些测量器具加上人力因素而导致螺纹测量的高成本。1.3 国外测量螺纹的情况1、1990 年 1 月 17 日,美国飞机标准委员会召开螺纹标准修订会,修订了关于螺纹合格性的两项军用标准:MIL-9-7742、MIL-9-8897。该标准中提出,通止端螺纹塞规只能用于检测螺纹规格为 0.019 英寸(相当于 M5)以下的内螺纹,这样,事实上就废除了

14、通止端螺纹量规。新标准分为两种螺纹:“保10安螺纹”和“其他螺纹”。对于保安螺纹则必须 100%的检测 11 个螺纹特征参数。2.早在 1992 年美国“ASME 验收统一英制螺纹、普通螺纹和航空螺纹尺寸的检测体系”中就提出了测内外螺纹可以用内、外螺纹指示量规,该指示量规可测出内外螺纹的单一中径、作用中径以及圆度、锥度误差。3、90 年代,瑞士以研制成功 Typ5652、Typ5676、Typ5677 型外螺纹综合测量仪,该仪器采用了标准螺纹件与被测外螺纹滚动的方法,可测出外螺纹中径值。4、德国研制出一种应用光纤维传感器的内螺纹自动检测装置,它可测内螺纹的大径、小径、中径和螺距误差,其整机测量

15、精度为 7m 。5、日本研制出一种螺纹自动坐标检测机,他可以测量螺纹的单一中径、螺距误差、半角误差、其分度值是 0.1m。通过对国内外螺纹检测情况的分析可知,用机械方法检测螺纹已经不能满足实际生产的需要,主要表现在:现代制造商产品种类越来越多,制造精度越来越高,很多场合要求实时、在线、非接触检测;现代制造业的发展需要更快速、有效的产品检测技术。基于数字图像处理技术的螺纹检测是伴随着计算机技术的发展而产生的一门新兴学科。具有非接触、速度快、精度高、现场抗干扰能力强等许多优点,能很好的满足现代制造业的需求。2 数字图像处理技术的螺纹检测2.1 测量原理现有的螺纹 CCD 光学测量系统多采用平行光将

16、螺纹形状投影到 CCD 上 ,然后再据此进行后期的处理、 计算 ,但是 ,这样的成像系统中投影平行光的衍射较为严重 ,对精度影响较大 ,且不易消除。本文采用透镜成像原理获取螺纹形状 ,避免了衍射对测量精度的影响。其原理结构如图 1 所示 ,按照测量流程 ,首先螺纹由夹持装置固定并保持与摄象机光轴垂直 ,然后螺纹图像通过光学系统的放大成像到 CCD 摄像头上 ,最后由图像采集卡对其进行采集后送至计算机进行分析计算 ,并得出测量结果。这里的测试分析软件主要包括图像的预处理、 边缘提取、亚像素定位等几方面。图 1 检测系统总体结构其中图像获取作为整个系统的前端部分是极其重要的 ,获取图像的精确度 ,

17、大倍数 ,畸变系数等因素直接影响到后期处理的过程以及测量结果的精确度。所以图像采集 ,要适当地提高其放大倍数以增加螺纹牙图像的像素数 ,提高拟合的精度。本文在光学系统设计的时候设计使用了多透镜的共轴球面系统使其放大倍数满足要求。2.2 螺纹图像处理11螺纹特征参数测量软件主要包括图像处理、 参数标定以及参数计算三个方面的内容 ,图像处理又包含图像预处理、 螺纹轮廓边缘的提取、 拟合等几个方面 ,其算法流程图如图 2 所示。2.2.1 螺纹图像的预处理当螺纹图像输入到计算机后 ,为了消除噪声 ,稳定地进行特征抽出等处理 ,须对其进行滤波等处理。图像滤波方法有空域法和频域法两大类。根据图像中噪声的

18、特性 ,处理方法有:空域低通滤波、 频域低通滤波、 中值滤波、 加权中值滤波 , N N 邻域的滤波和图像平均等。边缘保持滤波器2是在上述滤波器的基础上发展的一种滤波器 ,该滤波器在滤除噪声脉冲的同时 ,又不致于使图像边缘十分模糊 ,特别适合于像螺纹检测这样的我们只关心它的边缘特征的情况。边缘保持算法的基本过程如下 :对灰度图像的每一个像素点i , j 取适大小的一个邻域(如 3 3 邻域) ,分别计算 i , j 的左上角子邻域、 左下角子邻域、 右上角子邻域和右下角子邻域的灰度分布均匀度 v ,然后取最小均匀度对应区域的均值作为该像素点的新的灰度值。计算灰度均匀度的公式为v =f 2(i

19、, j) - f (i , j) 2/ N(1)由上式可得 ,分布越均匀 ,v 值越小。2.2.2 图像滤波由于图像在摄取过程中受到摄取器件、周围环境等影响, 会使摄取到的图像中含有噪声。噪声通常是随机产生的, 因而具有分布和大小的不规则性。为了使图像更逼真, 需要进行图像去噪, 也就是滤波。一些常见的噪声有椒盐噪声、 脉冲噪声、 高斯噪声等。 椒盐噪声含有随机出现的黑白亮度值; 脉冲噪声只含有随机的白亮度值或只含有随机出现的黑亮度值; 高斯噪声含有的亮度值服从高斯或正态分布。图像滤波的方法根据噪声本身的特性而定。一般情况下, 在空间域采用邻域平均的方法来减少噪声; 在频率域, 由于噪声的频谱

20、常多在高频段, 因此采用各种形式的低通滤波方法来减少噪声。在空间域, 图像的平滑常采用均值滤波或中值滤波。均值滤波是通过模板操作实现一种邻域运算, 即某个像素点的结果不仅与本像素灰度有关, 而且与其邻域的像素值有关。模板运算在数学中的描述是卷积运算。平滑模板的思想是通过一点和周围几个点的运算来去除突变点, 从而滤掉一定的噪声, 但图像有一定的模糊度, 而减少图像模糊是图像平滑处理的主要问题之一, 这主要取决于噪声本身的特性。均值滤波的主要问题是可能使图像中的尖锐不连续部分模糊,但非线性滤波算法既可消除噪声又可保持图像的细节。中值滤波是最简单的非线性滤波, 它采用一个含有奇数个点的模板窗口, 将

21、窗口中心与图中待处理的像素重合, 12读取模板下各对应像素的灰度值, 将灰度从大到小排序, 最后取该序列的中值来代替模板中心像素点的值。图 1(a)为均值滤波 , 图 1(b)为中值滤波。从图 1 中可以看出, 模板变大后的均值滤波更显模糊,而中值滤波后图像均匀, 线条比较明显。 2.3 图像边缘轮廓的提取螺纹尺寸测量的关键在于边缘轮廓的提取。图像的边缘是图像的最基本特征, 边缘点是指图像中周围像素灰度有阶跃变化或屋顶变化的那些像素点, 即灰度值导数较大或极大的地方。边缘检测局部算子法是考察图像的每个像素在某个邻域内灰度的变化, 利用边缘邻近一阶或二阶导数变化规律, 用边缘检测算子提取轮廓边缘

22、的方法。边缘检测算子检查每个像素的邻域并对灰度变化率进行量化, 也包括方向的确定, 然后使用基本方向导数掩模求卷积的方法提取边缘。此种方法应用于图像相对简单、被测物与背景的对比度较大的情况。但算子计算量较大, 效率偏低, 且算子的优劣决定边缘轮廓提取精度, 不适于本测量的要求。因此采用阈值法, 即利用图像的灰度直方图分布得到该图像灰度阈值, 再根据阈值将图像二值化, 形成锐化图像, 然后逐行扫描, 搜索图像边缘, 最终获得边缘轮廓曲线。2.3.1 经典边缘检测算子的理论分析和比较所谓边缘是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合, 两个具有不同灰度值的相邻区域之间总存在边缘。 图像

23、的边缘是图像的基本特征。边缘可以分为两种: 一种被称为阶跃性边缘, 它两边像素的灰度值有着显著的差别; 另一种称为屋顶状边缘。边缘检测算子是利用图像边缘的突变性质来检测边缘的。 它主要分为以下几种类型2: 一种是以一阶导数为基础的边缘检测算子, 在算法实现过程中, 通过 22 或 33 模板作为核与图像中的每个像素点做卷积 和运算, 然后提取合适的阈值以提取边缘, 如 Roberts 算子、Sobel 算子、Prewitt 算子; 一种是以二阶导数为基础的边缘检测算子, 通过寻求二阶导数中的过零点来检测边缘, 如 Laplacian 算子; Canny 算子是另外一类边缘检测算子, 它不是通过

24、微分算子实现边缘检测, 而是在一定约束下推导出的最优边缘检测算子。一阶导数算子也就是常说的梯度算子, 对于数字图像 z= f (x , y), 它的梯度定义为向量:13其中: Gx 和 Gy 是梯度值。因为数字图像是离散的, 计算偏导数时常用差分来代替微分。为了计算简便, 常利用小区域模板和图像卷积来计算近似梯度值, 采用不同的模板计算偏导数可产生不同的边缘检测算子, 常见的有 3 种: Roberts 算子、Sobel 算子、Prewitt 算子。Roberts 边缘算子是一种利用局部差分算子寻找边缘的算子, 它由下式给出:其中: f (x , y)、 f (x + 1, y)、 f (x

25、, y+ 1)和 f (x + 1, y +1)分别为 4 领域的坐标。 Roberts 算子是 22 算子模板, 如图 1 所示的 2 个卷积核形成了 Roberts 算子。 图像中的每一个点都用这 2 个核做卷积。Sobel 算子是一种一阶微分算子, 它利用像素邻近区域的梯度值来计算 1 个像素的梯度, 然后根据一定的阈值来取舍。它由下式给出:Sobel 算子是 33 算子模板, 如图 2 所示的 2 个卷积核 dx、dy 形成 Sobel 算子, 一个核对垂直边缘响应最大, 而另一个核对水平边缘响应最大, 2 个卷积的最大值作为该点的输出值。 运算结果是一幅边缘幅度图像。(1) Robe

26、rts 边缘检测算子采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看, 边缘定位准, 对噪声敏感, Roberts 边界见图 2(a)。(2) Sobel 边缘检测算子由 2 个卷积核形成, 图像中的每个点都用这 2 个核做卷积, 一个核对垂直边缘影响最大, 而另一个对水平边缘影响最大。 2 个卷积的最大值作为输出值, 其运算结果是一幅边缘幅度图像,Sobel 边界见图 2(b)。Prewitt 算子与 Sobel 算子的方法一样, 图像中的每个点都用这 2 个核进行卷积, 取最大值作为输出值。它由下式给出:14它是 33 算子模板。 如图 3 所示的两个卷积核 dx、 dy 形成

27、了 Prewitt 算子。Prewitt 算子也产生一幅边缘幅度图像。Laplacian 算子是一个二阶微分算子, 它利用边缘点处的二阶导函数出现零交叉的原理检测边缘。Laplacian 算子具有各向同性的性质, 其定义为:由于拉普拉斯算子是无方向的, 因而它只需 1 个模板就行了, 而不像前面的梯度算子需要 2 个模板分别用于计算 2 个方向的导数。 图像函数的Laplacian 算法可以借助如图 4 所示的模板卷积核来实现。Canny 算子是在以往的边缘检测算子和边缘检测的基础上提出的, 它满足信噪比准则、定位精度准则和单边缘响应准则。它的算法实现如下: 用高斯滤波器平滑图像; 用一阶偏导

28、的有限差分来计算梯度的幅值和方向; 对梯度幅值进行非极大值抑制; 用双阈值算法检测和连接边缘。用高斯函数对图像f (x , y) 进行滤波得到 f (x , y)3 G(x , y, ), 然后计算其梯度矢量的模和方向:15其中: G(x , y, )是高斯函数; 是表示平滑程度的空间常数。图像边缘点即为在方向 A 上使模 M 取得局部极大值的点。在实际应用中, Canny 算子通过 2 个阈值来分别检测强边缘和弱边缘, 只有在强边缘与弱边缘连接时, 弱边缘才被输出, 该算子不容易受噪声干扰。Roberts 算子是一种斜向偏差分的梯度计算方法, 梯度的大小代表边缘的强度, 梯度的方向与边缘走向

29、垂直。该算子定位精度高, 但容易丢失部分边缘。因为没进行平滑处理, 不具有抑制噪声的能力。用该算子处理边缘陡峭度高且噪声小的图像效果较佳。Sobel 算子和 Prewitt 算子都是一阶的微分算子,都是先对图像进行平滑处理, 虽然两者都是加权平均滤波, 但是前者邻域的像素对当前像素产生的影响不是等价的, 距离不同的像素具有不同的权值, 对算子结果产生的影响也不同。这两种算子对噪声都有一定的抑制作用, 但不能完全排除检测结果中出现虚假边缘的情况。这两者对灰度渐变低噪声的图像有较好的检测效果, 但是对于混合多复杂噪声的图像处理效果就不理想了。Laplacian 算子是二阶导数算子, 其方向信息已丢

30、失, 常产生双像素, 对噪声具有双倍加强作用, 因此它很少直接用于边缘检测。但是 , Laplacian 算子与高斯滤波相结合形成的 LOG 算子经常用于边缘检测。Canny 算子是一类最优边缘检测算子, 它在许多图像处理领域得到了广泛的应用。该算子的基本思想是先对处理的图像选择一定的高斯滤波器进行平滑滤波, 然后采用一种称之为非极值抑制的技术, 细化平滑后的图像梯度幅值矩阵, 寻找图像中的可能边缘, 最后利用双门限检测通过双阈值递归寻找图像边缘点, 实现边缘点。 因此, 该算子具有较强的噪声抑制能力, 但该算子有时也把一些高频边缘滤掉, 造成一部分边缘的丢失。2.3.2 利用 Canny 算

31、子提取两个具有不同灰度值的相邻区域之间总存在边缘 ,边缘是灰度值不连续的结果 ,这种不连续性通常可以利用求导数的方法方便地检测到。一般常用一阶导数和二阶导数来检测边缘。边缘检测的基本思想是首先利用边缘增强算子 ,突出图像中的局部边缘,然定义像素的 “边缘强度” ,通过设置门限的方法提取边缘点集。Canny 边缘检测是一种比较新的边缘检测算子 ,具有较好的边缘检测性能 ,能在噪声抑制和边缘检测之间取得良好的平衡。它利用高斯函数的一阶微分对图像进行滤波 ,得到每个像素梯度的大小| G| 和方向 : 16f 为滤波后的图像。该算法在检测中对梯度进行了“非极大抑制” :滤波后确定的边缘点会导致梯度幅度

32、图像中出现脊 ,算法追踪所有脊的顶部并将所有部在脊的顶部的像素设为零 ,以便在输出中给出一条细线 ,这就是非极大抑制处理。几种算子对标准量块的边缘检测的效果如图 3。比较可得 Canny 算法产生的边界较细、 定位精度高、 单一边缘好 ,这是由于 Canny 算法是通过对梯度方向上的非局部极大值进行抑制而达到这样的效果的 ,缺点是检测出来的杂散边界较多 ,但只要控制好检测的域值 ,可以减少杂散边界 ,降低其影响 ,它是检测阶跃型边缘效果最好的算子之一 ,它比 Prewitt 算子、 Sobel 算子、 拉普拉斯算子极小值算法的去噪能力都要强。这是用 Canny 算子检测图像的边缘的 matla

33、b 表达:I = imread(bacteria.BMP);imshow(I);BW1 = edge(I,canny,0.2);figure,imshow(BW1);2.3.3 图像轮廓的亚像素提取算法边沿检测得到的粗定位在螺纹参数的高精度测量中是远远不够的 ,必须利用其他办法提高其定位精度。按照基本原理的不同 ,比较成熟的亚像素细分算法有以下几类:矩方法、 形心法、 灰度重心法、 拟合算法和数字相关法等。因为标准的螺纹牙大都是直边 ,所以在本文中选择最小二乘的直边拟合来实现对螺纹牙轮廓的亚像素精定位。最小二乘法的原理是:成对等精度地测得一组数据( xi , yi) (i = 1 ,2 , ,

34、 k) ,若能找到一条最佳的拟合直线 ,那么这条拟合直线上的各点的值与测量17值的差的平方和在所有拟合直线中应是最小的。设有一独立等精度的测量列 xi(i =1,2, , n) ,其残差 (或偏差)为 rc = ri - r o ,残差(或偏差)平方和为ni =1v2i =ni = 1( xi - ? x)2= (ni = 1x2i) - n? x2 (4)式中 , ? x =1nni = 1xi 。螺纹牙的边界多为直线 ,当测量值 xi 的残差 v i 的平方和为最小时 ,得到真值的最佳估计值 ,其拟和直线方程形式如下:pm( x) = a1 + a2( x - ? x) (5)螺纹的提取边

35、界和拟合后边界的比较如图 4 ,图 5。可见 ,拟合前螺纹牙是很不光滑的 ,拟合后变成直线和三角形 ,更便于计算。 182.3.4 利用阈值法提取一幅图像包括目标物体、背景和噪声, 怎样从多值的数字图像中只取出目标物体, 常用的方法就是设定某一阈值 T , 用 T 将图像的数据分成两部分: 大于 T 的像素群和小于 T 的像素群。这是研究灰度变换最特殊的方法, 称为图像的二值化。二值化处理就是把图像分成目标物体和背景两个领域, 二值化后的图像称为二值图像。 确定阈值的方法很多: 有最小误差法、 最大方差阈值法、差分直方图法等等。直方图法是阈值算法中一种直观简单的方法, 它是通过统计每个灰度值在

36、图像中所占像素的比例来绘制各个灰度值在图像中的分布图, 进而确定用于分割物体和背景的阈值。若图像中只包括背景和物体, 那么直方图形状为两峰夹一谷, 在谷底取阈值最为合适,误差也最小。二值图像轮廓提取的原理非常简单, 就是掏空内部点, 如果原图中有一点为黑, 且它的 8 个相邻点皆为黑, 则将该点删除。针对本研究, 经过多次试验发现, 中值滤波后螺纹的直方图几乎没有受到噪声干扰, 是比较理想的两峰夹一谷的形状, 因此可以直观地在灰度直方图上查找谷底的取值区域, 并由此确定阈值的大小。 图 3 为一个经过中值滤波后螺纹图像的灰度直方图, 可以看出,谷底的取值是 50 150, 通过实际测算, 确定

37、阈值为 120。根据此阈值对图像进行二值化, 即大于 120 的灰度全部赋值为 255, 小于 120 灰度的全部赋值为 0, 就得到了一幅二值图像, 见图 4。对二值图像进行轮廓提取, 得到的图像见图 5。19图像的阈值分割的 matlab 表达:I=imread(blood1.tif);imhist(I); % 观察灰度直方图, 灰度 140 处有谷,确定阈值T=14020I1=im2bw(I,140/255); % im2bw 函数需要将灰度值转换到0,1范围内figure,imshow(I1);3 测量3.1 测量系统放大倍数的标定将轮廓进行拟合后如果直接计算得出的参数只能以像素为单位

38、表示 ,如何将像素结果转化为实际距离和长度则必须借助于测量系统放大倍数的标定。因此测量系统放大倍数的标定精度是保证测量系统高精度的前提。在进行实际测量之前 ,先对系统进行了标定实验 ,在同一测量条件下 ,对标准量块和直尺(3 级、3 等) 进行测量 ,然后通过最小二乘法进行拟合 ,去除粗大误差 ,得到该测量条件下的系统的放大比例系数。例如在螺纹 1 的测量中 ,k = 像素数/ 物长 = 160/ 7 ,在螺纹 2 的测量中 , k = 104/ 3 , k 值的大小决定了测量系统的分辨率 ,因此可以使物体的像素跨度尽可能大一些以增大 k 值 ,提高测量精度。但是 ,由于镜头在 x 方向和 y

39、 方向的畸变和放大倍数在理论上是不一样的 ,所以要对其 x 方向和 y 方向分别进行标定。螺纹的几何尺寸有:牙型角(牙型半角) 即螺纹夹角(侧面角) 、 螺距、 导程、 螺纹高度、 大径、 小径、 中径、 螺纹升角等。对于一些用于密封的管螺纹还有螺纹锥度等参数。普通外螺纹的基本牙型1如图 6 所示。大径 D 按照拟合直线的交点参数直接相减计算即可;与外螺纹牙底相重合的假想圆柱体的直径 ,称为小径;中径 d2 与大径和原始三角形高度 H 有下列关系: d2 = D - 3 H/ 4 ;螺纹高度 h 是螺纹牙顶与牙底之间的垂直距离 : h = (D - d1)/ 2 ;螺距是指相邻两牙在中径线上对

40、应两点间的轴向距离 ,对于单线螺纹 ,导程等于螺距;对于多头(线)螺纹 ,导程等于螺距与线数(n) 的乘积 :L = nP;牙型角是指在通过螺纹轴线剖面内的螺纹牙型上相邻两牙侧间的夹角 ,公制普通螺纹的牙型角 = 60 ;牙型半角是牙侧与螺纹轴线的垂线间的夹角 / 2 = 30 ,牙型角正确时牙型半角仍可能有误差 ,如:两半角分别为 29 和 31 ,故测量应测量半角;在中径圆柱上螺旋线的切线与垂直与螺纹轴线的平面的夹角为螺纹升角 ,它与螺距 P 和中径 d2 的关系为tan = nP/d2(6)式中 ,n 为螺纹线数。213.2 实验结果及精度分析按照上述方法 ,得到的螺纹的测量结果如表 1

41、 所示 ,可以看出系统重复测量精度较高 , 误差较小 ,满足设计要求。本文利用图像在 CCD 上所占像素数来进行测量 ,所以测量精度很大程度上取决于 CCD 器件上像素的大小。为了提高测量的精度 ,根据前面的分析 ,我们采用的拟合的算法 ,使计算的精度达到了 0. 1 个像素。而本实验所采用的 CCD 摄像机上的 CCD 芯片每个像素大小为:8. 6m 8. 3m ,因此 ,可以得出 ,本系统图像处理部分的精度约为 0. 8m。3.3 误差分析引起测量误差的主要因素4有 :(1)成像系统几何畸变误差 ,包括透镜误差和透视误差等;(2) 成像系统的噪声 ,包括相机的光子噪声、 暗电流噪声、 光响

42、应非均匀性噪声、 杂波噪声和温度的影响等以及其他如手印、 图像采集的像素抖动等引起的误差 ;(3)量化误差、 图像分割过程中的影响因素及特征量计算过程中的影响因素等。这些影响精度的因素都应尽量消除或是减小。其中 ,光子噪声等主要由器件决定 ,而一些温度产生的误差 ,只要给相机预热就可极大地减少 ,其他如暗电流等的噪声总会存在 ,但实验表明它可以忽略不计。前面提到透镜畸变产生的误差就成了最主要的影响因素。本文采用摄像系统标定的方法5来消除或降低其影响。摄像系统标定的原理以及算法相当复杂 ,文献5对其进行了详细的解释 ,这里不再做具体介绍。本文主要简单介绍标定的具体流程:首先拍摄高精度正交网格板图

43、像 ,然后提取其网格节点 ,提取时在节点附近区域用理想模版进行相关运算 ,再对相关系数矩阵作二次曲面拟合确定节点的亚像素位置 ,当网格线的宽度合适时 ,相关法的定位精度可以达到 0. 010. 02 个像素;然后将网格节点的坐标代入式(7) 中 ,用最小二乘法来求解该式中 k、 b0 、 c0 、 u、v5 个参数 ,即可以得到理想的网格场。u = - kv + c0 + i uv = ku + b0 + jv(7)22然后将理想网格节点坐标( ui , vi) 和该点处的像差(ui ,vi)代入式(8) 中 ,利用最小二乘法对超定线方程组进行求解 ,就可得到摄像机畸变误差模型。u( u, v

44、) = a0 + a1 u + a2 v + a3 u2+ a4 uv +a5 v2+ a6 u3+ a7 u2v + a8 uv2+ a9 v3v( u, v) = b0 + b1 u + b2 v + b3 u2+ b4 uv +b5 v2+ b6 u3+ b7 u2v + b8 uv2+ b9 v3(8)最后利用得到的摄像机畸变误差模型 ,可以建立起原图像和修正图像的映射关系 ,从而得到误差修正后的图像。其中 ,修正一般分为两步 :坐标变换和灰度插值。利用坐标变换来计算修正图像像素点( u, v)在原图像上对应点的坐标( u , v ) ,由于( u , v ) 一般为小数 ,因此要用插

45、值方法得到( u , v ) 处的灰度值 ,将( u , v ) 处的灰度值赋给修正图像的像素点( u, v) 。如果要提取的目标为点特征目标 ,则可以通过映射关系只对目标位置进行变换来得到修正的目标位置。这种方法可以避免大量的插值计算。实验可以得到系统的像差小于 0. 25 个像素 ,即光学系统的误差约为 2m。23结 论本系统实现了螺纹几何尺寸的非接触测量。测量的速度快、精度较高。图像的边缘是图像的重要特征之一, 数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础, 其目的是精确定位边缘, 同时较好地抑制噪声。由光源和卡具创建图像采集环境, 尽量减少外界干

46、扰, 然后通过 CCD 采集图像并由图像采集卡传入计算机中, 在计算机中对图像进行数字处理, 得到螺纹的轮廓, 进而计算出螺纹的几何参数, 最后与标准尺寸相比较判断是否合格。非接触测量这在工程上对保证配件的质量具有重要的意义。24参考文献1 徐孝恩.螺纹测量M.北京 :机械工业出版社 ,1986.2 钟 建.图像测量及分析系统的研究与实现D. 重庆 :重庆大学 ,2002.3 冈萨雷斯.数字图像处理 (MATLAB 版) M. 阮秋琦等译 .北京:电子工业出版社 ,2005. 285-320.4 王庆有. CCD 应用技术M. 天津 :天津大学出版社 ,2000.5 于起峰.基于图像的精密测量

47、与运动测量 M. 北京:科学出版社 ,2002. 116-125.6 陈应洲, 王学校, 张伟. 基于图像处理的几何参数测量系统 J . 大连轻工业学院学报, 2003(4): 62-64.7 陈向伟, 王龙山, 刘庆民, 等. 基于 CCD 的齿轮参数测量系统的研究J . 工具技术, 2004(5): 44-46.25致 谢本研究及学位论文是在我的导师金香教授的亲切关怀和悉心指导下完成的。他严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。从课题的选择到项目的最终完成,金老师都始终给予我细心的指导和不懈的支持。四年多来,金老师不仅在学业上给我以精心指导,同时还在思想、生活上给我以无微不至的关怀,在此谨向金老师致以诚挚的谢意和崇高的敬意。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报