收藏 分享(赏)

高考数学知识点.doc

上传人:jmydc 文档编号:6431456 上传时间:2019-04-12 格式:DOC 页数:13 大小:65.50KB
下载 相关 举报
高考数学知识点.doc_第1页
第1页 / 共13页
高考数学知识点.doc_第2页
第2页 / 共13页
高考数学知识点.doc_第3页
第3页 / 共13页
高考数学知识点.doc_第4页
第4页 / 共13页
高考数学知识点.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、第一章 集合与简易逻辑命题趋与应试策略1.有关集合的高考试题.考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用文氏图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练.2.有关“充要条件” 、命题真伪的试题.主要是对数学概念有准确的记忆和深层次的理解.试题以选择题、填空题为主,难度不大,要求对基本知识、基本题型,求解准确熟练.第二章 函 数命题趋向与应试策略1.有关函数单调性和奇偶性的试题,从试题上看,抽象函数和具体函数都有,前些年大多数考具体函数,近几年都有在不给出

2、具体函数的情况下求解问题的试题,可见有向抽象函数发展的趋势,另外试题注重对转化思想的考查,且都综合地考查单调性与奇偶性.加强对函数单调性、奇偶性的应用训练也是复习的重点,也就是在已知函数已具有奇偶性或单调性的性质条件下,在解题中如何合理地运用这些性质解题.首先应熟练掌握二次函数、反比例函数、指数函数、对数函数,以及形如 y=x+ 的函数等一些常见函数的性质,1归纳提炼函数性质的应用规律.再如函数单调性的用法主要是逆用定义等.2.与函数图象有关的试题,要从图中(或列表中)读取各种信息,注意利用平移变换、伸缩变换、对称变换,注意函数的对称性、函数值的变化趋势,培养运用数形结合思想来解题的能力.3.

3、与反函数有关的试题,大多是求函数的解析式,定义域、值域或函数图象等,一般不需求出反函数,只需将问题转化为与原函数有关的问题即可解决.4.与指数函数和对数函数有关的试题.对指数函数与对数函数的考查,大多以基本函数的性质为依托,结合运算推理来解决.能运用性质比较熟练地进行大小的比较、方程的求解等.会利用基本的指数函数或对数函数的性质研究简单复合函数的单调性、奇偶性等性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.5.与映射有关的试题:1998 年以前的全国试题均没有涉及映射的概念,在 1999 年和2000 年连续两年考查了映射的概念,说明尽管考试说明中对

4、映射的要求不高,但在高考中有加强的趋势,我们在复习中要予以重视.在映射问题中,有许多的题目叙述是映射,实际问题是函数,因为数集到数集的映射即为函数.6.本章内容在高考解答题中,文科大多以对数函数为背景,结合对数运算,以考查对数函数的性质及图象等题型为主;理科解答题多以方程或二次函数为背景,综合考查函数、方程和不等式的知识,重视代数推理能力.此类试题,一般要经过变形转化,归结为二次函数问题解决.这是近年高考的重点和热点.在此基础上,理解和掌握常见的平移、对称变换方法.以基本函数为基础,强化由式到图和由图到式的转化训练.加强函数思想、转化思想的训练是本章复习的另一个重点.善于转化命题,引进变量建立

5、函数,运用变化的方法、观点解决数学试题以提高数学意识,发展能力.7.理解掌握常见题的解题方法和思路,构建思维模式,并以此为基础进行转化发展,即在造就思维依托的基础上,还要打破框框,发展能力.8.要认真准备应用题型、探索题型和综合题型,要加大训练力度.要重视关于一次函数、二次函数、对数函数的综合题型,重视关于函数的数学建模问题,重视代数与解析几何的综合题型,重视函数在经济活动和生活实际中的应用问题,学会用数学思想和方法寻求规律找出解题策略.对函数有关概念,只有做到准确、深刻地理解,才能正确、灵活地加以运用.函数是数学中最重要的概念之一,它贯穿中学代数的始终.数、式、方程、不等式、数列及极限等,是

6、以函数为中心的代数,高考考查的内容,几乎覆盖了中学阶段的所有函数,如一次函数、二次函数、反比例函数、指数、对数函数,还有三角函数、反三角函数等,也涉及到函数的所有主要的性质,且以考查三基为主,通性通法为主,因此更应加强函数与三角函数、不等式、数列等各章间知识的联系,养成自觉运用函数观点处理问题的习惯和培养自身的能力.所谓函数观点,实质是将问题放到动态背景上去考虑,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线等问题.函数是用以描述客观世界中量的依存关系的数学概念,函数思想的实质就是用联系、变化的观点提出数学对象,建立函数关系,求得问题解决.近几年高考中,考查函数的思想方法已更加突

7、出,特别是 1993 年开始考查应用题以来,考查力度逐年加大,都需用到函数的知识与方法才能解决,从如何建立函数关系式入手,考查函数的基本性质,以及数形结合、分类讨论、最优化等数学思想,重视对实践能力的考查是高考的新动向.因此要强化函数思想的应用意识的训练,才能适应高考新的变化.第三章 数 列命题趋向与应试策略1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的 10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前 n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列、数

8、学归纳法内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点.(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查.(3)加强了数列与极限的综合考查题.3.熟练掌握、灵活运用等差、等比数列的性质.等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动

9、发现题目中隐含的相关性质,往往使运算简洁优美.如 a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a 2a4=a32,a 4a6=a52,从而有 a32+2aa53+a52=25,即(a 3+a5) 2=25.又如第 14 题,利用等差数列的性质:“在等差数列a n中,S n、S 2n、S 3n分别是其前 n 项和、前 2n 项和、前 3n 项和,则 Sn,S 2nS n,S 3nS 2n也成等差数列”可以快速求解.在考题中,此类情况比比皆是,大大提高了解题速度和准确度.4.对于极限,在掌握有关基本知识的前提下,应牢固掌握几种基本题型:根据极限定义证明简单数列极限求极限应

10、掌握以下几种情形:(i)利用 01limn(ii)利用 qn=0 (| q|1 )lim(iii )利用等比数列各项和公式.(|q| 1)5.对客观题,应注意寻求简捷方法.解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:借助特殊数列.灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法.6.在数列的学习中加强能力训练.数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现

11、,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养.7.在数列中加强应用题的训练.第四章 三角函数考点阐释近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点.在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形

12、结合的思想方法.三角函数线是三角函数的一种几何表示,是用规定了方向的线段来表示三角函数的值.每种三角函数的定义及其相应的函数线之间的对应都是:“数”与“形”的对应,前者是代数形式,后者是几何形式,代数形式便于计算,几何形式形象直观.同角三角函数的基本关系和诱导公式也是高考重点考查的内容,因为在已知三角函数值求角,求任意角的三角函数值,化简三角函数式,证明三角恒等式等问题,都要用到这些知识,它们的应用非常广泛,所以也是本章复习的重点.在复习时要注意掌握任意角的三角函数定义,因为三角函数的定义域,三角函数的值域,三角函数值的符号,同角三角函数的基本关系式都是根据三角函数的定义推导得出的,诱导公式的

13、导出也直接或间接地应用了三角函数的定义,因此正确理解和运用任意角的三角函数定义是复习好同角三角函数的基本关系式和诱导公式的关键.众多的三角变换公式是解决三角学中一系列典型问题的工具,也是深入研究三角函数的图象与性质的重要工具.掌握三角函数的奇偶性和单调性,能利用它们解决问题.反三角函数的内容是三角函数及其性质的运用和延伸,它们和三角函数是紧密相联的,经常转化为与三角函数有关问题来进行研究.重点掌握:(1)熟练掌握函数 y=Asin( x+ ) (A0 , 0)的图象及其性质,以及图象的五点作图法、平移和对称变换作图的方法.(2)利用单位圆、函数的单调性或图象解决与三角函数有关的不等式问题.(3

14、)各类三角公式的功能:变名、变角、变更运算形式;注意公式的双向功能及变形应用;用辅助角的方法变形三角函数式.命题趋向与应试策略1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从 1993 年至 2002 年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题.3.基本的解题规律为:观察差异(或角,或函数,或运算) ,寻找联

15、系(借助于熟知的公式、方法或技巧) ,分析综合(由因导果或执果索因) ,实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4.立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对

16、三角函数性质和图象的考查力度.5.重视数学思想方法的复习如前所述本章试题都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等.另外对有些具体问题还需要掌握和运用一些基本结论.如:关于对称问题,要利用 ysin x 的对称轴为 xk ( kZ ) ,对称中心为2(k ,0) , (kZ)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征.在求三角函数值的问题中,要学会用勾股数解题的方法,因为高考试题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果.6.加强三角函数应用意

17、识的训练1999 年高考理科第 20 题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法.7.变为主线、抓好训练.变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比

18、比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律.针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.8.注意对三角形中问题的复习.由于教材的变动,有关三角形中的正、余弦定理.解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,从 1996 年和 19

19、98 年的高考试题就可看出,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关.9.在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考.第五章 平面向量与直线、平面、简单几何体 B命题趋向与应试策略对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在 B 类教材中).在空间坐标

20、系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.第六章 不等式命题趋向与应试策略1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含

21、着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相

22、衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.5.重视数学思想方法的复习根据本章上述的命题趋向我们迎考复习时应加强数学思想方法的复习.在复习不等式的解法时,加强等价转化思想的训练与复习.解不等式的过程是一个等价转化的过程,通过等价转化可简化不等式(组) ,以快速、准确求解.加强分类讨论思想的复习.在解不等式或证不等式的过程中,如含参数等问题,一般要对参数进行分类讨论.复习时,学生要学会分析引起

23、分类讨论的原因,合理的分类,做到不重不漏.加强函数与方程思想在不等式中的应用训练.不等式、函数、方程三者密不可分,相互联系、互相转化.如求参数的取值范围问题,函数与方程思想是解决这类问题的重要方法.在不等式的证明中,加强化归思想的复习,证不等式的过程是一个把已知条件向要证结论的一个转化过程,既可考查学生的基础知识,又可考查学生分析问题和解决问题的能力,正因为证不等式是高考考查学生代数推理能力的重要素材,复习时应引起我们的足够重视.利用函数 f(x) =x (a0)的单调性解决有关最值问题是近几年高考中的热点,应加强这方面的训练和指导.6.强化不等式的应用高考中除单独考查不等式的试题外,常在一些

24、函数、数列、立体几何、解析几何和实际应用问题的试题中涉及不等式的知识,加强不等式应用能力,是提高解综合题能力的关键.因此,在复习时应加强这方面训练,提高应用意识,总结不等式的应用规律,才能提高解决问题的能力.如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,求最值时要注意等号成立的条件,避免不必要的错误.第七章 直线和圆的方程命题趋向与应试策略在近十年的高考中,对本章内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;对称问题(包

25、括关于点对称,关于直线对称)要熟记解法;与圆的位置有关的问题,其常规方法是研究圆心到直线的距离(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化本章内容在高考中处于比较稳定状态,复习时应注意以下几点:1.抓好“三基” ,把握重点,重视低、中档题的复习,确保选择题的成功率本章所涉及到的知识都是平面解析几何中最基础的内容.它们渗透到平面解析几何的各个部分,正是它们构成了解析几何问题的基础,又是解决这些问题的重要工具之一.这就要求我们必须重视对“三基”的学习和掌握,重

26、视基础知识之间的内在联系,注意基本方法的相互配合,注意平面几何知识在解析几何中的应用,注重挖掘基础知识的能力因素,提高通性通法的熟练程度,着眼于低、中档题的顺利解决.2.在解答有关直线的问题时,应特别注意的几个方面(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次要注意倾角的范围.(2)在利用直线的截距式解题时,要注意防止由于“零截距”造成丢解的情况.如题目条件中出现直线在两坐标轴上的“截距相等” “截距互为相反数” “在一坐标轴上的截距是另一坐标轴上的截距的 m 倍(m 0) ”等时,采用截距式就会出现 “零截距” ,从而丢解.此时最好采用点斜式或斜截式求解.(3)在利用直线的

27、点斜式、斜截式解题时,要注意防止由于“无斜率” ,从而造成丢解.如在求过圆外一点的圆的切线方程时或讨论直线与圆锥曲线的位置关系时,或讨论两直线的平行、垂直的位置关系时,一般要分直线有无斜率两种情况进行讨论.(4)要学会变形使用两点间的距离公式求直线 l 上两点(x 1,y 1) , (x 2,y 2)的距离时,一般使用 d=;当已知直线 l 的斜率 k 时,可以将上述公式变形为221)()(|cs|sec| |1|1212 12212yx yxkd (其中 为直线 l 的倾斜角)特别地,当求直线 l 被圆锥曲线所截得的弦长时,把直线的方程代入圆锥曲线的方程,整理成关于 x 或 y 的一元二次方

28、程时,一是要充分考虑到“0”的限制条件,二要注意运用韦达定理的转化作用,充分体现“设而不求法”的妙用.(5)灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算.掌握对称问题的四种基本类型的解法.即点关于点对称直线关于点对称点关于直线对称直线关于直线对称.(6)在由两直线的位置关系确定有关字母的值,或讨论直线 Ax+By+C=0 中各系数间的关系和直线所在直角坐标系中的象限等问题时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学方法和思想.(7)理解用二元一次不等式表示平面区域,掌握求线性目标函数在线性约束下的最值问题,即线性规划问题,会求最优解,并注意在代数问

29、题中的应用.3.加强思想方法训练,培养综合能力平面解析几何的核心是坐标法,它需要运用运动变化的观点,运用代数的方法研究几何问题,因此解析几何问题无论从知识上还是研究方法上都要与函数、方程、不等式、三角及平面几何内容相联系.在对本章复习中,应注意培养用坐标法分析问题观点,养成自觉运用运动变化的观点解决问题的能力.加强与正比例函数、一次函数等知识的联系,善于运用函数的观点方法处理直线方程问题.对本章知识的综合上,重点掌握直线方程的四种特殊形式与斜率、截距、已知点等特征量之间的关系,知道了特征量就能准确地写出方程,反之亦然.在平时要经常做这方面的训练.第八章:圆锥曲线方程命题趋向与应试策略1.本章内

30、容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有 23 道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:(1)考查圆锥曲线的概念与性质;(2)求曲线方程和求轨迹;(3)关于直线与圆及圆锥曲线的位置关系的问题.2.选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲

31、线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视3.注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.4.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.5.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法.在复习过程中抓住以下几点:(1)坚持源于课本、高于课本,以考纲为纲的原则.高考命题的依据

32、是高考说明.并明确考点及对知识点与能力的要求作出了明确规定,其实质是精通课本,而本章考题大多数是课本的变式题,即源于课本,因此掌握双基、精通课本是关键.(2)复习时要突出“曲线与方程”这一重点内容.曲线与方程有两个方面:一是求曲线方程,二是由方程研究曲线的性质.这两方面的问题在历年高考中年年出现,且常为压轴题.因此复习时要掌握求曲线方程的思路和方法,即在建立了平面直角坐标系后,根据曲线上点适合的共同条件找出动点 P(x,y)的纵坐标y 和横坐标 x 之间的关系式,即 f(x,y)=0 为曲线方程,同时还要注意曲线上点具有条件,确定 x,y 的范围,这就是通常说的函数法,它是解析几何的核心,应培

33、养善于运用坐标法解题的能力,求曲线的常用方法有两类:一类是曲线形状明确且便于用标准形式,这时用待定系数法求其方程;另一类是曲线形状不明确或不便于用标准形式表示,一般可用直接法、间接代点法、参数法等求方程.二要引导如何将解析几何的位置关系转化的代数数量关系进而转化为坐标关系,由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练.(3)加强直线与圆锥曲线的位置关系问题的复习.由于直线与圆锥曲线的位置关系一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想来设。而不求法与弦长公式及韦达定理联系去

34、解决.这样就加强了对数学各种能力的考查.(4)重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程.方程思想,解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.用好函数思想方法对于圆锥曲线上一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及 a,b,c,e 之间构成函数关系,函数思想在处理这类问题时就很有效.掌握坐标法坐标法是解析几何的基本方法,因此要加强坐标法的训练.对称思想由于圆锥曲线和圆都具有对称性质,可使分散的条件相对集中,减少一些变量和未知量,简化计算,提高解题速度,

35、促成问题的解决.参数思想参数思想是辩证思维在数学中的反映,一旦引入参数,用参数来划分运动变化状态,利用圆、椭圆、双曲线上点用参数方程形式设立或(x 0、y 0)即可将参量视为常量,以相对静止来控制变化,变与不变的转化,可在解题过程中将其消去,起到“设而不求”的效果.转化思想解决圆锥曲线时充分注意直角坐标与极坐标之间有联系,直角坐标方程与参数方程,极坐标之间联系及转化,利用平移得出新系坐标与原坐标之间转化,可达到优化解题的目的.除上述常用数学思想外,数形结合、分类讨论、整体思想、构造思想也是不可缺少的思想方法,复习也应给予足够的重视.(5)在注重解题方法、数学思想的应用的同时注意一些解题技巧,椭

36、圆、双曲线、抛物线的定义揭示了各自存在的条件、性质及几何特征与圆锥曲线的焦点、焦半径、准线、离心率有关量的关系问题,若能用定义法,可避免繁琐的推理与运算.涉及到原点和焦点距离问题用极坐标的极径表示.关于直线与圆锥曲线相交弦则结合韦达定理采用设而不求法.利用引入一个参数表示动点的坐标 x、y,间接把它们联系起来,减少变量、未知量采用参数法.有些题目还常用它们与平面几何的关系,利用平面几何知识会化难为易,化繁为简,收到意想不到的解题效果第九章 直线、平面、简单几何体(A)命题趋向与应试策略1.近几年,立体几何高考命题既严格按照教学大纲和教材的要求,又遵循命题的指导思想和原则,坚持稳定大局,控制难度

37、,贯彻“说明”要求,同时在创新方面作了一些有益的尝试命题稳定主要表现在:考查重点及难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定、线面间的角与距离的计算作为考查的重点,尤其是以多面体和旋转体为载体的线面位置关系的论证,更是年年反复进行考查,在难度上也始终以中等偏难为主在改革创新方面主要表现在:1996 年主观试题客观化,1997 年的填空题以组合的面目出现,1998 年的填空题由已知结果探求条件,且答案不惟一,使试题更具开放性和探索性,1999 年则要求考生将四个论断中的三个条件中,余下一个为结论,写出正确命题,2000 年是多选题,通过一个空间图形在不同平

38、面上的射影,考查学生的多角度思考问题和空间想象能力,2000 年、2002 年又在大题进行了改革使其更有综合性、开放性立体几何题成为命题者的试验田.这些改革尝试的目的在于激发“学生独立思考,从数学的角度去发现和提出问题,并加以探索和研究,有利于提高学生的思维能力和创新意识”.2.高考直接考查线面位置关系,以多面体和旋转体为载体考查线面间的位置关系是今后命题的一种趋势本章内容在高考中如上章所述无论在题型、题量、难度等方面都比较稳定,但因本章性质多、公式多反映在考题上有以下特色1.用选择、填空题考查本章的基本性质和求积公式,分以下几类:(1)与多面体和旋转体的面积、体积有关的计算问题;(2)与多面

39、体和旋转体中某些元素有关的计算问题;(3)考查多面体和旋转体中的某些概念.从上述所列的这些题难度都不大,且多数是文理同题,其中计算问题多于考查概念的题,但要想顺利解决计算问题,必须熟练掌握多面体与旋转体的性质,因为性质是解决几何体计算问题的理论基础2.用解答题综合考查空间(线面间的位置关系和几何体的概念和性质,近几年立体几何解答题多采用一题多问的方式,这样既降低了起点,又分散了难点,试题既包含了一定量的证明步骤,也包含了计算部分,能较全面地考查逻辑推理能力,空间想象能力和运算能力,同时还应注意利用前面的结论、图形等分析后面的结论.估计这种命题的特点还将保持下去3.本章内容在高考中无论在题型、题

40、量和难度方面都比较稳定,复习时应注意以下几点:(1)理解定义、定理本质,科学地进行判断与论证.依据定义、定理,对立体几何中各元素间的关系或几何体的某些特性的存在与否进行判定与论证是高考的重要内容之一.高考中常以判断题的形式出现,解此类问题,关键是相关的概念、判定、性质定理要清楚,其次要否定某些错误的判断,可运用运动变化的思想,让点或直线或平面在满足条件的情况下充分运动,往往可以发现一些特殊情况或极端位置时出现错误.另外将文字语言、符号语言、图形语言灵活准确地进行转化是解答这类题目的前提.再者举反例是解判断题的常用方法.(2)通过典型问题掌握基本解题方法高考中立体几何解答题基本题型是()证明空间

41、线面平行或垂直, ()求空间中线面的夹角或距离, ()求几何体的侧面积及体积.()证明空间线面平行或垂直需注意以下几点:由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路.立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一.明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论.三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑.应用时常需先认清所观察的平面及它的垂线,从而明确斜线、射影、面内直线的位置,再根据定理由已知的两直线垂直得出新的两直线垂直.另外通过计算证明线线垂直也是常用的方法之一.()求

42、空间中线面的夹角或距离需注意以下几点:注意根据定义找出或作出所求的成角或距离,一般情况下,力求明确所求角或距离的位置.作线面角的方法除平移外,补形也是常用的方法之一;求线面角的关键是寻找两“足” (斜足与垂足) ,而垂足的寻找通常用到面面垂直的性质定理.求二面角高考中每年必考,复习时必须高度重视.二面角的平角的常用作法有三种:根据定义或图形特征作;根据三垂线定理(或其逆定理)作,难点在于找到面的垂线.解决办法,先找面面垂直,利用面面垂直的性质定理即可找到面的垂线;作棱的垂面.作二面角的平面角应把握先找后作的原则.此外在解答题中一般不用公式“cos ”求二面S角否则要适当扣分.求点到平面的距离常

43、用方法是直接法与间接法,利用直接法求距离需找到点在面内的射影,此时常考虑面面垂直的性质定理与几何图形的特殊性质.而间接法中常用的是等积法及转移法.求角与距离的关键是将空间的角与距离灵活转化为平面上的角与距离,然后将所求量置于一个三角形中,通过解三角形最终求得所需的角与距离.()求几何体的侧面积及体积应注意以下几点:应用侧面积及体积公式时要抓住下面三个环节即:正确记忆公式;求出公式所需要的量;进行简明正确的运算.对于多面体要注意反映其主要因素关系的直角三角形或直角梯形;对于旋转体则主要分析其轴截面、平行于底面的截面等.求未知量应注意各种公式为我们提供的列方程式的基本等量关系然后列出相关的方程或方

44、程组来求解.求面积或体积的比值问题,一般需用相同的字母表示求比的两个量,在求比值时约去字母,得到比值.特殊情况,对于截面分某几何体所成两部分的面积或体积比值的问题,也可以先求出两部分的面积(或体积)各占原来的几分之几,然后再求得所需比值.(3)综合运用、培养能力、掌握常用技巧.立体几何学科的特点决定了立体几何综合题的基本模式是论证推理与计算相结合.解决这种类型的题目对各种能力具有较高要求.解题原则是一作、二证、三求解(即作图、证明、求解).学会识图、理解图、应用图.通过对复杂空间图形直观图的观察和分解,发现其中的平面图形或典型的空间图形(如正方体、正四面体、等边圆锥等) ,以便联想有关的平面几

45、何或立体几何知识.需要作图添加辅助线、面时,力求用定理、公理作为作图的依据,以便在作图时得到所添线、面的特征.注意数学中的转化思想的运用(i)常用等角定理或平行移动直线及平面的方法转化所求角的位置;(ii)常用平行线间、平行线面间或平行平面间距离相等为依据转化所求距离的位置;(iii )常用割补法或等积(等面积或等体积)变换解决有关距离及体积问题.注意发现隐蔽条件由于近年考题常立足于棱柱、棱锥和正方体,因此复习时应注意多面体的依托作用,熟练多面体性质的应用,才能发现隐蔽条件,利用隐含条件,达到快速准确解题的目的第十章 排列、组合、二项式定理和概率、统计考点阐释本章从内容到方法都是比较独特的,是

46、进一步学习概率论的基础知识.其中分类计数原理和分步计数原理是本章的基础,它是学习排列、组合、二项式定理和计算事件的概率的预备知识.在对应用题的考查中,经常要运用分类计数原理或分步计数原理对问题进行分类或分步分析求解,如何灵活利用这两个原理对问题进行分类或分步往往是解应用题的关键.从两个原理上,完成一件事的“分类”和“分步”是有区别的,因此在应用上,要注意将两个原理区分开.排列、组合也是本章的两个主要概念.定义中从 n 个不同元素中,任取 M(M n)个元素“按一定的顺序排成一列”与不管怎样的顺序“并成一组”是有本质区别的.只有准确、全面把握这两个概念,才能正确区分是排列问题,还是组合问题.具体

47、解决手段:只要取出2 个元素交换看结果是否有变化.二项式定理中,公式一般都能记住,但与其相关的概念如:二项式系数、系数、常数项、项数等,学生易混,须在平常加以对比分析,对通项公式重点训练.应用上要注意:它表示二项展开式中的任意项,只要 n 与 r 确定,该项随之确定.公式表示的是第 r+1 项.公式中 a、b 的位置不能颠倒,它们的指数和为 n.r 的取值从 0到 n,共 n+1 个 .古典概型是学习概率与统计的起点,而掌握古典概型的前提是能熟练掌握排列组合的基本知识.熟练掌握五种事件的概率以及抽样方法、总体分布的估计、期望和方差.命题趋向与应试策略1.本章内容在高考中所占比重不大,但试题都具

48、有一定的灵活性、机敏性和综合性.在“倡导创新体系,提倡素质教育”的今天,本章的考题是最好的体现.一般有 12 道小题,且多为选择、填空题,应注意二项式定理在近似计算中的应用.2.高考对排列、组合内容的考查,一般以实际应用题形式出现,这是因为排列、组合的应用性概念强,并充满思辨性和解法多样性,符合高考选择题的特点,易于考查学生的能力,此类题大致可分两类.(1)有附加条件的排列问题,此类题多数只有一个附加条件,且以学生熟悉的数学问题或排队问题为主.(2)有附加条件的组合问题.此类题常以“至少取 n 个”或以几何为背景的分类组合问题为主.3.高考对二项式定理的考查,以二项式展开式及其通项公式内容为主

49、,要有目标意识和构造意识,要注意展开式的通项公式正、反两方面的应用.此类题也可分两类.(1)直接运用通项公式求特定项的系数或与系数有关的问题.(2)需用转化思想化归为二项问题来处理的问题.4.高考对统计、概率内容的考查,往往以实际应用题出现.这既是这类问题的特点,也符合高考发展方向,考生要以课本概念和方法为主,以熟练技能,巩固概念为目标,查找知识缺漏,总结解题规律.5.本章试题的特点是:(1)综合性强.如排列、组合题大多能与集合、数列、立体几何等内容组合构成小型综合题,使每题涉及的知识点在两个以上.(2)应用性强,如统计问题及概率问题,都是以实际问题为背景.(3)对运用数学思想的要求高,如解排列、组合问题时,需分类讨论、分步讨论.以几何为背景的排列、组合题需用数形结合的思想,在解非二项问题时,需用转化思想化归为二项问题求解等,这种命题特点在以后的高考中仍会保持下去.6.根据高考试题的现状和发展趋势看,考生应:(1)立足基础知识和基本方法的复习.恰当选取典型例题,构建思维模式,造就思维依托和思维的合理定势,如对排列应用题可用某

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高考课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报