收藏 分享(赏)

基于labview_和fpga_的虚拟仪器平台设计_毕设论文最终530.doc

上传人:无敌 文档编号:633100 上传时间:2018-04-15 格式:DOC 页数:85 大小:3.94MB
下载 相关 举报
基于labview_和fpga_的虚拟仪器平台设计_毕设论文最终530.doc_第1页
第1页 / 共85页
基于labview_和fpga_的虚拟仪器平台设计_毕设论文最终530.doc_第2页
第2页 / 共85页
基于labview_和fpga_的虚拟仪器平台设计_毕设论文最终530.doc_第3页
第3页 / 共85页
基于labview_和fpga_的虚拟仪器平台设计_毕设论文最终530.doc_第4页
第4页 / 共85页
基于labview_和fpga_的虚拟仪器平台设计_毕设论文最终530.doc_第5页
第5页 / 共85页
点击查看更多>>
资源描述

1、河南科技大学毕业设计(论文)I毕业设计论文基于 LabVIEW 和 FPGA 的虚拟仪器平台设计摘要现代生产要求电子仪器品种多、功能强、精度高、自动化程度高,而且要求测试的速度快、实时性好,具有良好的人机界面。虚拟仪器正好可以实现这些要求。在电子实验中使用多种仪器,如信号发生器、万用表、频率计、示波器等,如果能把它们都设计成虚拟仪器,利用计算机来提高仪器的集成度,减少实验匹配的仪器的种类、数量和实验室面积,便能从根本上改变实验室的面貌,克服传统测量仪器单一功能的缺点。本设计正是以这种思想为出发点,以电子技术实验室的真实函数信号发生器、示波器、频率计为蓝本,利用LabVIEW编程来设计虚拟函数信

2、号发生器、虚拟存储示波器、虚拟频率计,并将其合并在一个虚拟平台上面,能够分别实现虚拟仿真函数信号发生器、存储示波器、及频率计的功能,实现真正意义上的虚拟仪器平台。其虚拟平台上面的函数信号发生器可以产生正弦波、三角波、方波三种波形,并能够实现波形频率从1Hz到2MHz可调,峰峰值从0.1V到8.0V可调,实时性很好;示波器能正确的显示波形,并能实现频率和幅值的可调;频率计可以对0HZ到99.99KHZ的信号进行频率的测量。本设计利用RS-232串口进行数据的传输,实现了LabVIEW与FPGA的通信。同时对仿真信号的生成与控制做了详细的分析,以及对设计中的问题进行了深入的探讨。本设计旨在找到一个

3、能够改革教学实验室的有效途径。关键词:虚拟仪器,LabVIEW,RS-232,FPGA河南科技大学毕业设计(论文)IITHE DESIGN OF VIRTUAL INSTRUMENTS PLATFORM BASED ON LABVIEW AND FPGAABSTRACTModern production requires electronic instrumentation variety many, strong function, high precision, high degree of automation, and high speed, good real-time in tes

4、ting, good man-machine interface. Virtual Instruments can meet precisely these requirements. A variety of instruments are used in the electronic experiments, such as signal generator, multimeter, frequency meter, oscilloscope, etc. If we are able to design them to virtual instruments, improve the in

5、tegration of instruments using computer and reduce the type and number of instruments matched to experiments and the space of laboratory, then we can change the face of the laboratory fundamentally and conquer the shortcomings of single function of the traditional measuring instruments.The design of

6、 this thinking is the starting point of electronic technology to the real function of the laboratory signal generator, oscilloscope, frequency meter based on the use of LabVIEW programming to design the virtual function signal generator, virtual storage oscilloscope, the virtual frequency meter, and

7、 combined in a virtual platform, to achieve the virtual simulation function, respectively, signal generator, oscilloscope, and frequency of functions, the realization of the true sense of the virtual instrument platform. Its virtual platform for the above function signal generator can produce sine w

8、ave, triangle wave, square wave three, and be able to achieve the waveform frequency from 1Hz to 2MHz Adjustable peak peak adjustable from 0.1V to 8.0V, a very good real-time; oscilloscope waveform display correctly, and to achieve an adjustable frequency and amplitude; 0HZ Cymometer can 99.99KHZ si

9、gnal to the frequency measurements.The design of the use of RS-232 serial port for data transmission, the realization of the LabVIEW and FPGA communication. At the same time, the generation of simulation and control signals to do a detailed analysis, as well as design issues in detail. The design of

10、 a reform aimed at finding an effective way of teaching laboratory.KEY WORDS: Virtual Instrument,LabVIEW,RS-232,FPGA 河南科技大学毕业设计(论文)III目 录前 言 .1第 1 章 绪论 .21.1 虚拟仪器的背景 .21.1.1 数字信号处理技术 .21.1.2 虚拟仪器技术 .21.2 本课题研究的意义 .31.2.1 设计的依据及意义 .31.2.2 国内外发展状况 .41.3 关于 LabVIEW.51.3.1 开发环境 LabVIEW .51.3.2 选择 LabVIE

11、W 的原因 .5第 2 章 系统的构想与方案设计 .72.1 上位机与下位机 .72.2 DDS 的工作原理 .72.3 方案论证 .82.4 系统整体框图与设计思想 .112.4.1 系统框图 .112.4.3 频率计设计思想 .122.4.2 函数信号发生器设计思想 .13第 3 章 上位机设计 .153.1 LabVIEW 软件设计思想 .153.2 人机交互界面设计 .173.2.1 人机交互界面的构成 .183.2.2 界面的组件设计 .193.3 主 VI 程序框图设计 .203.3.1 程序框图 .203.3.2 器件选择部分设计 .213.3.3 串口发送部分设计 .213.4

12、 函数信号发生器程序框图的设计 .22河南科技大学毕业设计(论文)IV3.4.1 程序框图 .223.4.2 波形类型部分设计 .233.4.3 频率选择部分设计 .243.4.4 峰峰值调节部分设计 .253.4.5 串口发送部分设计 .253.5 频率计程序框图的设计 .263.5.1 程序框图 .263.5.2 发送数据类型控制部分设计 .263.5.3 串口发送部分设计 .283.5.4 串口接收部分设计 .283.5.5 显示部分设计 .293.6 设计中用到的主要 VI.29第 4 章 下位机设计 .314.1 FPGA 软件中主模块的设计思想 .314.1.1 主模块的软件设计原

13、理总图 .314.1.2 FPGA 软件中主模块的设计原理 .314.2 FPGA 软件中函数信号发生器的设计思想 .324.2.1 函数信号发生器的软件设计原理总图 .324.2.2 FPGA 软件中函数信号发生器的设计原理 .324.3 FPGA 软件中频率计的设计思想 .344.3.1 频率计的软件设计原理总图 .344.3.2 FPGA 软件中频率计的设计原理 .344.4 频率计的系统模块设计 .354.4.1 串口接收模块 .354.4.2 串口转换模块 .384.4.3 分频模块 .394.4.4 控制模块 .404.4.5 串口发送模块 .414.4.6 频率计模块 .424.

14、5 函数信号发生器的系统模块设计 .454.5.1 串口接收模块 .45河南科技大学毕业设计(论文)V4.5.2 串口转换模块 .454.5.3 分频模块 .464.5.4 地址发生器模块 .484.5.5 ROM 表查询模块 .494.5.6 波形选择模块 .514.5.7 幅值调节模块 .524.5.8 频段选择模块 .534.6 串口的编码与解码 .544.6.1 关于串口 .544.6.2 串口的设置 .554.6.3 串口的发送与接收 .554.7 硬件连接 .56第 5 章 软件仿真测试与实时检测 .575.1 LabVIEW 软件仿真测试 .575.1.1 LabVIEW 软件中

15、函数信号发生器的仿真测试 .575.1.2 LabVIEW 软件中频率计的仿真测试 .575.2 FPGA 软件中函数信号发生器的仿真测试 .585.3 FPGA 软件中频率计的仿真测试 .595.4 总功能实时检测 .59参考文献 .65致 谢 .66河南科技大学毕业设计( 论文)1前 言虚拟仪器的出现就是仪器发展史的一场革命,代表仪器发展的方向和潮流,对科学技术的发展和工业生产的进步产生了巨大的推动作用。虚拟仪器技术是测试领域的一种新的思想和方法,它的出现是测试仪器技术和测控系统的一个新的里程碑。虽然是新兴的仪器仪表技术,但由于其具备许多区别于传统仪器的突出优点,可以由用户自行设计定义,灵

16、活变换参数,随着计算机技术特别是软件技术和仪器技术的进步而飞速发展,因此使现代测控的系统更灵活、更紧凑、更经济、功能更强大,从而在国内外各个领域得到了越来越广泛的应用。特别在电子测量和自动化控制领域,虚拟仪器技术得到了巨大的发展。虚拟仪器是一种功能意义上的测量和控制仪器,是具有仪器功能的软件、硬件的组合。它充分利用计算机技术,在基本的硬件支持下,通过调用相应的软件模块来完成各种传统仪器的功能。本文从探索研究的角度出发,对虚拟仪器的系统构成、实现手段和开发方法进行了研究。在此基础上,研究开发了基于 LabVIEW 开发平台的虚拟仪器平台,通过计算机串口把 LabVIEW 发送的控制指令送到 GW

17、48 实验箱 FPGA 的 RS-232 接收引脚,经过 FPGA 对控制指令的处理,实现对虚拟平台上面相应虚拟仪器的调用,对不同的虚拟仪器应做不同的处理:如,虚拟频率计,当其接收到开始工作的信号后,将其频率和占空比,通过 RS-232 发送引脚,发送给计算机上面的LabVIEW,LabVIEW 通过对串口进行读操作,将读到的结果转换成数值,并将其在虚拟频率计的界面上面显示,结果较为满意。在开发虚拟仪器的同时,掌握了LabVIEW 编程语言和开发技术及标准,对虚拟仪器的构成、实现手段和开发方法有了一定的认识。由于虚拟仪器技术在国内尚未普及,针对传统教学仪器缺乏或陈旧、教学方式呆板、学生实验使用

18、多台仪器,实验准备烦琐,支持维护困难、实验室设备更新,硬件更新费时费力的等情况。把虚拟仪器引入教学是一种必然趋势。本文试图探索出一条适合我国国情的虚拟仪器的途径,做到花钱少,具有较高的性价比,以在教学实验领域进行推广。河南科技大学毕业设计( 论文)2第 1 章 绪论1.1 虚拟仪器的背景虚拟仪器涵盖了数字信号处理、虚拟仪器技术等多方面知识。本文所开发的虚拟仪器平台就是在信号技术、计算机技术、电子技术高速发展的背景下,利用美国 NI 公司的虚拟仪器开发平台LabVIEW 进行设计开发的,它可以快速方便地实现信号的采集、显示、分析、储存、读取和输出。1.1.1 数字信号处理技术在科学研究和生产过程

19、中,经常要对许多客观存在的物体或物理过程进行观测。这些客观存在的事物包括了大量标志本身所处时间空间特征的数据和“情报” ,这就是该事物的“信息” 。人们为了某一特定的目的,从浩瀚的信息中把所需要的部分提出来,以达到观测某一本质问题的目的。这种对信息的表达形式称之为“信号” ,信号是某一特定信息的载体。信号传输理论与技术的不断发展使信号处理技术的出现成为必然。在科学和工程技术领域中,常常需要对信号进行处理。信号处理就是对数据进行所需要的变换或按约定的规则进行运算,使之更便于对它们进行分析、识别和使用。信号的处理包括对信号的监测、滤波、时域分析、频域分析,调制等等。信号分为模拟信号和数字信号,在对

20、模拟信号进行处理时,既可以使用模拟系统也可以使用数字系统。使用数字系统处理模拟信号时,需要先将模拟信号转化为数字信号,即模数转化(A/D),然后用数字系统进行处理,得到一个处理后的数字信号,再经过数模转化(D/A),得到所需的模拟信号。1.1.2 虚拟仪器技术由于电子技术、计算机技术、软件技术、网络技术的高度发展及其在电子测量技术与仪器上的应用,新的测试理论、新的测试方法、新的测试领域及新的仪器结构不断出现,许多方面已经突破传统的仪器概念,电子测量仪器的功能和结构己经发生了质的变化。在这种背景下,八十年代末美国率先研制了虚拟仪器(Virtual Instruments)。虚拟仪器就是利用现有的

21、计算机加上特殊设计的仪器河南科技大学毕业设计( 论文)3硬件和专用软件,形成既有普通仪器的基本功能,又有一般仪器没有的特殊功能的高档、低价的新型仪器。虚拟仪器利用个人计算机强大的图形环境和在线帮助功能,建立虚拟仪器面板,完成对仪器的控制、数据分析与显示。代替传统仪器,改变了传统仪器的使用方式,提高仪器的功能和使用效率,同时大大降低了仪器的价格,使用户可以根据自己的需要定义仪器的功能。用于虚拟仪器的开发环境目前有两大类:一是文本式的编程语言,如Visual Basic, Visual C+、LabWindow/CVI等,另一类是图形化编程语言,具有代表性的有LabVIEW, HPVEE。其中影响

22、最大的要数LabVIEW(Laboratory Virtual Instrument Engineering Workbench,实验室虚拟仪器工程平台)语言,被称为“仪器仪表界面” ,是专为数据采集与仪器控制、数据分析和数据表达而设计的开发软件 1。1.2 本课题研究的意义1.2.1 设计的依据及意义虚拟仪器(Virtual Instrumention)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。目前在这一领域内,使用较为广泛的计算机语言是美国 N

23、I公司的 LabVIEW。目前,在大多数院校的实验教学中,常用的仍然是功能固定的台式仪器,主要有存储示波器、函数信号发生器、频率计、实验箱、电源等。对于一个高等院校而言,进行实验教学最少需要配备 30 套设备,每套造价近万元,其负担是可想而知的。更由于电子设备更新快, 时间一久,进行正常的实验对于好多院校都是一个困难。另外,台式机操作复杂,调试困难,受干扰程度高,在教学中不易受学员接受。而采用虚拟仪器教学实验系统,首先,仪器使用软件实现,我们可以把以上所说的几种仪器集成在一个系统中,运用不同切换过程,可以同时实现教学的目的。本课题利用 LabVIEW 软件和 FPGA 的通讯在计算机屏幕上实现

24、虚拟仪器平台面板,此虚拟仪器平台上包括函数信号发生器、存储示波器和频率计仪器,用户可以通过鼠标对操作面板的按钮、开关和按键,进行上述仪器的功能切换并设置河南科技大学毕业设计( 论文)4各种工作参数,来控制和操作相应的仪器。测量和分析结果可以从虚拟仪器面板上读出。用户在屏幕上通过虚拟仪器面板对仪器的操作如同在真实仪器上的操作一样直观、方便、灵活。利用虚拟仪器开设综合性、创新型实验,使理论教学与实践更好的紧密结合,教学更生动、更形象,全面提高学生工程素质。同时还可以激发学生的实验兴趣,使学生的实验技能、创新能力得到显著提高。由于此仪器平台具有多台仪器的功能,实验所需仪器的占地面积被减小,相应的实验

25、准备过程被大大的简化。函数信号发生器、频率计和存储示波器作为实验课程上必备的实验仪器,本课题设计虚拟仪器平台比传统的更加灵活,节约成本。教师在教学过程中不需要在一台真实的仪器前操作,只需在电脑上即可完成仪器的演示。虚拟仪器的教学更好的结合了理论与实践相结合,使学生的软件与硬件技能同步提高,虚拟仪器软硬件上模块化的设计使学生在学习的方式上更加灵活,也容易掌握。由此可见,就课程的开设和学生的实际情况来讲虚拟仪器教学是可行的,虚拟仪器平台的设计对于我们日后教学是有一定的意义的。1.2.2 国内外发展状况早在八十年代,随着 NI 旗航产品 LabVIEW 的诞生,NI 就提出“软件就是仪器的口号” ,

26、开辟了“虚拟仪器技术”的崭新测量概念。从九十年代开始,国内一些大学在实验教学领域相继开展了虚拟仪器系统的研究与开发工作。目前,我国部分高校还正在开展虚拟仪器的研究工作,重点在于研制具有自主知识产权的虚拟仪器软件平台,并开发响应的虚拟仪器设备。2003 年 10 月和 2004 年 1 月NI 分别联合吉林大学和华中科技大学创建 LabVIEW 实验室;2004 年 12 月清华大学与美国国家仪器公司在精密仪器和机械系新建虚拟仪器联合教学实验室。LabVIEW 作为一种模块化、图形化程序设计工具具有图形化程序设计编程简单、直观、开发效率高、测试系统开发完整等优点。在国内外,航天、航空、通信、汽车

27、、半导体、自动控制和生物医学等世界范围的众多领域内得到广泛应用使得非专业人员进行虚拟仪器开发变得容易。在虚拟仪器的硬件构成中,数据采集卡的性能是最重要的。由于 PCI 总线传输速率高,数据吞吐量大,因此基于 PCI 总线的数据采集卡成为设计的主流。但是由于数据采集卡价格昂贵,且教学实验波形精确度要求不高,也可采用基于Nios与 LabVIEW 的函数波形发生器设计,即采用 FPGA 结合微处理器的形式。河南科技大学毕业设计( 论文)5DDS 部分功能由 FPGA 来实现,微处理器用于完成控制功能,再运用 SOPC 技术基于 FPGA 芯片将处理器、存储器、I/O 等系统需要的模块集成到一起,软

28、硬件可裁减,并具备在系统可编程的功能,可大大简化系统电路,提高系统集成度。1.3 关于 LabVIEW1.3.1 开发环境 LabVIEW孤立的计算机硬件和 I/O 接口设备均无法完成测试任务,软件技术在自动测试系统的研制与开发中正在起着越来越重要的作用。LabVIEW 编程语言是美国最大的虚拟仪器制造商 NI 公司推出的一种基于 G 语言(Graphics Language)的虚拟仪器软件开发工具。LabVIEW 是“实验室虚拟仪器工程平台(Laboratory Virtual Instrument Engineering Workbench) ”的缩写,用于 LabVIEW 设计的虚拟仪器

29、可脱离 LabVIEW 开发环境,用户最终看见的是和实际硬件仪器相似的操作面板。LabVIEW 是一个工程软件包。1986 年,美国国家仪器公司(National Instruments)开发研制出它是基于苹果公司的 Macintosh 微机的最早版本。之后,该公司不断推出各种操作系统的 LabVIEW 版本 2。它们的出现开创了虚拟仪器的仪器研究新方法。1.3.2 选择 LabVIEW 的原因选择 LabVIEW 开发测试和测量应用程序的一大决定性因素是其开发速度。通常,使用 LabVIEW 开发应用系统的速度比其他编程语言快 410 倍。这一惊人速度背后的原因在于 LabVIEW 易用易学,它所提供的工具使创建测试和测量应用变得更为轻松。LabVIEW 的具体优势主要体现在以下几个方面:1. 提供了丰富的图形控件,并采用图形化的编程方法,彻底把工程师们从复杂枯涩的文本编程工作中解放出来。2. 内建的编译器在用户编写程序的同时就在后台自动完成了编译。因此用户在编写程序的过程中如果有语法错误,它会被立即显示出来。3. 由于采用数据流模型,它实现了自动的多线程,从而能充分利用处理器尤其是多处理器的处理能力。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 管理论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报