收藏 分享(赏)

常用微积分公式.pdf

上传人:HR专家 文档编号:6295693 上传时间:2019-04-05 格式:PDF 页数:6 大小:71.73KB
下载 相关 举报
常用微积分公式.pdf_第1页
第1页 / 共6页
常用微积分公式.pdf_第2页
第2页 / 共6页
常用微积分公式.pdf_第3页
第3页 / 共6页
常用微积分公式.pdf_第4页
第4页 / 共6页
常用微积分公式.pdf_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、常用數學與微積分公式定理( 1/ 7)常用數學公式常用數學公式axdttxspecial casesbxyxy xrxxyxyxr)ln ( )ln( ) , ln( ) , ln( ) ln( ) ln ln ln( ) lnln( ) ln ln=+=+ =z1010 0:ae e e jbe xce y y yey y yjxyy). , ,cossin)exp()xp(ln)ln ln (exp( )ln102 718281828 1=+= = =sin( ) sin cos cos sinsin( ) sin cos cos sincos( ) cos cos sin sincos(

2、 ) cos cos sin sinsin cos sin( ) sin( )cos sin sin( ) sin( )cos cos cos( ) cos( )sin sin cos( ) cos( )()/(AB A B A BAB A B A BAB A B A BAB A B A BA B AB ABAB AB ABAB AB ABAB AB ABassumexAByABthenAxyBx+= + = += = + = += += + = + =+=RST=+=121212122+RST+=+=+=+=+yxyxy xyxyxy xyxyxy xyxyxy xy)/sin sin si

3、n cossin sin cos sincos cos cos coscos cos sin sin2222222222222sin sin coscos cos sin cos sincoscos,sincossin cossin tan sec , cos cot csc221212212211122 2 222 222 222 = =+=+=+= +=“aaabgb gch b gch常用數學與微積分公式定理( 2/ 7)常用微分公式常用微分公式d f g g df f dgdu du d u udCdxdC C constantdx C dx dx dx C()()(: )() ()=

4、+=+= =+= = +12 1200dedxedeedxdxdx x udu d uxxx= = =lnln11dxdxnx dx nx dxdxdxxdxxdddx x xdxxdxnnnn= =FHGIKJ=FHGIKJ=1122222211 11dxy ydx xdydx y mx ydx ny xdym ydx n xdydxyxydyxxdy ydxxdxyydx xdyymn m n n mmnmn()()=+= + + =FHGIKJ=FHGIKJ=ch111122dxdxxdxxdxdxdxxdxxdxdxdxxdxxdxdxdxxdx xdxdxdxxx dx xxdxdx

5、dxxx dx xxdxsincos sin coscossin cos sintansec tan seccotcsc cot cscsecsec tan sec sec tancsccsc cot csc csc cot= = = = =22dxdxxdxxdxdxdx xdxxdxdxdxxxdxxxdxdxdxxdxxdxdxdx xdxxdxdxdxxxdxxxdxsinsintantansecseccoscoscotcotcsccsc=+=+=122112211221122112211221111111111111111111常用數學與微積分公式定理(3/7)微積分定理與公式微積分

6、定理與公式ddxfx gxddxfxddxgxddxfg gddxffddxgfgfgfgfgfg fgggxyyu uuxdydxdydududx() () () ()()() ()= = + = +LNMOQP= =20chain rule : if and then dF xdxfx fxdx Fx Cddxf t dt f x addxfxdx fx d fxdx fxdxfxdx d fxdxdf xdxdx f x C d f x f x C Cyyx dyydxuuxy duuxdxuydyudv uv vduax()() () ()() ( ) , :() () () ()()

7、 ()()() () () ( : )()(,)= =+= =+= =+=+RS|T|=zzzzzzzzzconstant.integral constant( integral by parts )() ()ddxfxtdt fxbxdbdxfxpxdpdx xfxtdtpxbxpxbx(,) ,() , () (,)() ()zz= +b g b gdCdxdxdxnxnn=01dedxededxaedadxaaxx chain ruleaxaxxx= =ln常用數學與微積分公式定理(4/7)微積分定理與公式微積分定理與公式dxdxxdxdxxdxdxxdxdxxdxdxxdxdxxdxd

8、xxdxdxxdxdxxxdxdxxxdxdxxxdxdxxchain rulechain rulechain rulechain rulechain rulechain rulesincossincoscossincossintansectanseccotcsccotcscsecsec tansecsec tancsccsc cotcsccsc= = = = = = = 22cotxdxdxxdxdxxdxdxxdxdxxdxdx xdxdx xdxdx xdxdx xdxdxxxdxdxxchain rulechain rulechain rulechain rulechain rules

9、in sin()cos cos()tan tan()cot cot()sec sec(= = =+ =+=+ =+= =121212121212121212111111111111xdxdxxxdxdxxxchain rule)csc csc()2121211111= =Binomial formulaxy Cxy Cx yLeibniz s formuladdxfg fg Cf gwhere Cnknknknknknknkknknnk knnnknknknkkn:!()() ( )+= = =FHGIKJ=bgbgbgbg000常用數學與微積分公式定理(5/7)微積分定理與公式* Taylo

10、rs series expansion :fxfanxafafaxafaxafaxawhere n n n nf(x) is an infinitely differentiable functionexnxx xxxnxxnnnxnnnnn()()!()()()!()()!()()!()!.!sin()()!()()=+ += = + + + +=+=+=0233023210121221112 3121“b gb g b gb gsome important expansions:35720246233571212461112123!cos()()! ! ! !+ += + +=+=xxxx

11、nxxxxpxppxpp pxnnnpbgbg bgb g“If thenddxFx f x f xdx Fx CddxCbg bg bg bg=+=LNMOQPz,0xdxnxC ndxxxCduuuCnn=+=+ =+zzz1111bgln lnedxaeCadxaaC ae eax axxx xaxax= +=+= =zz11lnlnlnej111111111111212121212121=+=+=+=+=+=+zzzzxdx x Cxdx x Cxdx x Cxdx x Cxxdx x Cxxdx x Csin costan cotsec csc常用數學與微積分公式定理(6/7)微積分

12、定理與公式ebxdxeababxbbxCebxdxeababxbbxCaxaxaxaxcos cos sinsin sin cos=+ +=+ +zz2222sin coscos sintan ln sec sec tancot ln sin csc cotsec ln sec tan sec tancsc ln csc cot csc cotsin coscos sintan ln seccot ln sinxdx x Cxdx x Cxdx x C xdx x Cxdx x C xdx x Cxdx x x C xdx x Cxdx x x C xdx x Cxdx x Cxdx x Cxdx x Cxdxzzzzzzzzzz= +=+=+ =+=+ =+=+ = += + + = += += +=+=2222111111xCxdx x x Cxdx x x C+=+= + +zzsec ln sec tancsc ln csc cot11

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报