1、9.图形的放大与缩小 (第一课时),北师大版 八年级 下册(第四章),本节课主题目标,1.放大与缩小图形 2.会按照要求的比例绘制放大或缩小圖形 3.位似图形的概念、性质;位似比的概念,课件导航,应用位 似图形 概念练 习,这些图 形有什 么特点,观察下 列图形 的变换,已经学过 的图形变 换和性质,想一想,看一看,练一练,议一议,对称,平移,旋转,回顾与思考,轴对称 与轴对称图形,中心对称与 中心对称图形,平移的 方向、 距离,旋转中心、 方向、角度,全等和相似,1、你还记得已经学过的图形变换和性质吗?,图形的平移,点的平移:, 平面图形的平移:,线的平移,立体图形的平移,对称轴,轴对称与轴
2、对称图形,A,B,C,D,E,F,对称中心,中心对称与中心对称图形,A,B,C,D,E,F,旋转中心,A,B,C,E,D,F,图形的旋转,观察下列图形的特点,下面是一组形状相同的图形的图片,在第一张图片上取一点A,它与其他图片上的相应点之间的连线是否经过镜头,在图片上换其它的点试一试,还有类似的结论吗?,A,B,C,D,P,特点,结论,1、如果两个图形不仅相似,而且每组对应顶点 所在的直线都经过同一个点,那么这样的两 个图形叫做位似图形。,2、这个点叫做位似中心。,3、这时的相似比又称为位似比。,观察下列图形的特点,一、判断题:位似图形是相似图形?相似图形是位似图形?,二、判断位似图形、位似中
3、心、位似比?,位似图形是:,(1)、(3),位似中心是:,P,O,点P、点O,位似比是:,位似图形上的任意一对对应点到位似中心的距离之比等于位似比(同学们可度量教材中图形的长度),练一练,应用位似图形概念作图,方法一:,本章第三节P104用橡皮筋 放大图形的方法。,实际上,使用这种方法,放大前后的两个图形是位似图形. 你能用这种方法将一个已知的多边形放大,使放大后的图形与原来图形的位似比分别是3和4吗?,应用位似图形概念作图,方法二:利用位似中心作图将ABC的三边缩小为原来的1/2,P,A,C,B,1、在ABC外任取一点P,2、分别连接PA、PC、PB,3、分别取PA、PB、PC的中点D、E、
4、F,4、依次连接D、E、F,D,E,F,实际上ABC与DEF是位似图形,位似中心是点P,小结,问题,如何利用位似中心作出扩大的图形呢?,(2) 如果在射线AO、BO、CO上分别取 点D、E、F,使DO=2OA, EO=2OC,那么结果又会怎样?,A,O,C,B,F,E,D,相当于把ABC放大了两倍!,应用位似图形概念作图,利用位似中心将ABC三边扩大位原来的2倍,A,B,C,P,D,E,F,H,N,G,O,K,T,R,问题1:PA、AD、EB、BP、FC、CP有何关系?,问题2:HO、OK、NO、OT、GO、OR有何关系?,应用位似图形概念作图,1、如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做 。2、 这个点叫做 。3、这时的相似比又称为 。4、位似图形上任意一对对应点到位似中心的距离之比等于 。5、我学会了把任意图形 。,位似图形,位似中心,位似比,位似比,放大与缩小,练一练,