1、6.4 二次函数的应用(1),初三数学备课组,1、二次函数 的顶点坐标是 ,与x轴的交点坐标是 ,与y轴的交点坐标是 ; 2、二次函数 的顶点坐标是 ,对称轴是 ,此函数有最 值为 。,复习旧知,若3x3,该函数的最大值、最小值分别为( )、( )。,又若0x3,该函数的最大值、最小值分别为( )、( )。,求函数的最值问题,应注意什么?,55,55 13,3、图中所示的二次函数图像的解析式为:,5,用一根36cm长的铁丝围成一个矩形(接头忽略不计),它的一边长为xcm. (1)写出这个矩形的面积S与边长x之间的函数关系式。 (2)一边长x为何值时,矩形的面积S最大?最大值是多少?,问题:,某
2、种粮大户去年种植水稻360亩,平均每亩收益440元,他计划今年多承租若干亩稻田。预计原360亩稻田平均每亩收益不变,新承租的稻田每增加1亩,其每亩平均收益比去年每亩平均收益少2元。该种粮大户今年应多承租多少亩稻田,才能使总收益最大?,例1,分析:若设今年多承租X亩稻田,新承租的的稻田共收益 元;根据题意可得函数关系式: .,例2,去年鱼塘里饲养鱼苗10千尾,平均每千尾的产量为1000千克,今年计划继续向鱼塘里投放鱼苗,预计每多投放1千尾,每千尾的产量将减少50千克,今年应投放鱼苗多少千尾,才能使总产量最大?最大总产量是多少?,室内通风和采光主要取决于门窗的个数和每个门窗的透光面积。如果计划用一
3、段长12m的铝合金型材,制作一个上部是半圆、下部是矩形的窗框,那么当矩形的长、宽分别为多少时,才能使该窗户的透光面积最大(不计铝合金型材的宽度)?,例3,如图,在ABC中,AB=8cm,BC=6cm,B90,点P从点A开始沿AB边向点B以2厘米秒的速度移动,点Q从点B开始沿BC边向点C以1厘米秒的速度移动,如果P,Q分别从A,B同时出发,几秒后PBQ的面积最大?最大面积是多少?,拓展延伸,归纳小结:,运用二次函数的性质求实际问题的最大值和最小值的一般步骤 :,求出函数解析式和自变量的取值范围,配方变形,或利用公式求它的最大值或最小值。,检查求得的最大值或最小值对应的自变量的值必须在自变量的取值
4、范围内 。,解这类题目的一般步骤,1、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。,解:,(1) AB为x米、篱笆长为24米 花圃宽为(244x)米,(3) 墙的可用长度为8米,(2)当x 时,S最大值 36(平方米), Sx(244x)4x224 x (0x6), 0244x 6 4x6,当x4cm时,S最大值32 平方米,当堂反馈,2、在矩形荒地ABCD中,A
5、B=10,BC=6,今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何设计,可使花园面积最大?,1.在矩形ABCD中,AB6cm,BC12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题: (1)运动开始后第几秒时, PBQ的面积等于8cm2 (2)设运动开始后第t秒时, 五边形APQCD的面积为Scm2, 写出S与t的函数关系式, 并指出自变量t的取值范围; t为何值时S最小?求出S的最小值。,思考,2.如图,规格为60 cm60 cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE45 cm。现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN。 (1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取值范围; (2)请用含x的代数式表示S,并在给定的直角坐标系内画出该函数的示意图; (3)利用函数图象回2答:当x取何值时,S有最大值?最大值是多少?,图,